WWW.promax.it

User Guide

Wz

file:///C:/PUBBLICITA/Nuovi%20manuali/Ngm%20Evo/Italiano/www.promax.it

VTBII USER GUIDE

The information contained in this document are for informational purposes only and are subject to change without notice
and should not be interpreted by any commitment by Promax srl. Promax Ltd. assumes no responsibility or liability for
errors or inaccuracies that may be found in this manual. Except as permitted by the license, no part of this publication may
be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, recording
or otherwise without prior permission Promax srl.

Any references to company names and products are for demonstration purposes only and does not allude to any actual
organization.

Rev. 1.00.0

VTBII USER GUIDE

1 INTRODUCTION

VTBII is an integrated development environment for OBJECT oriented programming on PROMAX platforms. This environment
contains inside all tools needed to development of application in simple and intuitive way. The VTBII philosophy is based on
latest technologies R.A.D. (RAPID APPLICATION DEVELOPMENT) which allow a fast development of application writing a reduced
amount of source code. A large library of OBJECTS and TECNHOLOGIC FUNCTIONS allow to create applications for all sector area
of industrial automation. VTBII integrates a high level language like enhanced BASIC MOTION. It's also possible to manage in
clear and simple way FIELD BUS such as:

CAN OPEN
ETHERCAT
MODBUS

Powerful functions of AXIS MOVING allow to manage any type of machine using LINEAR, CIRCULAR, FAST LINEAR
INTERPOLATION or ELECTRIC GEAR, CAM PROFILES, etc.

VTBII USER GUIDE

2 NOTES ON PROGRAMMING LANGUAGE

VTBII programming language is defined as BASIC MOTION.

Its syntax is very similar as enhanced BASIC with some terminologies derived from C language. Management of the functions is
very similar as VISUAL BASIC also for DATA STRUCTURES.

Some INSTRUCTIONS are VTB PROPRIETARY but following the same philosophy.

VTBII is a language CASE INSENSITIVE that is it make no differences between UPPER CASE and LOWER CASE regarding
instructions, functions, variables etc. VTB converts internally all characters in UPPER CASE. The only one exception is the
management of DEFINE where characters are not converted in upper case but they remain so in all compilation passes.
Because VTB is a language addressed to MOTION, some features, considered of secondary importance, remained at PRIMITIVE
level. For example, the STRING management is made like C language using function such as STRCPY, STRCAT, STRCMP etc.

VTBII USER GUIDE

3 DEVELOPMENT ENVIRONMENT

The development environment of VTBIl has a common intuitive interface like all Windows applications. It isn't necessary to have
a great experience of programming. In the environment is included an EDITOR with Intellisense optimized for VTBII
programming.

W VTEZ - COProna v et Test upe - o X

Fhe Bt Pmpsy Deseg Vew Took Mep
QU@ 3089 < B SP 0pY AN Aaddddd B SO RRI0

i
it
7 '5

o '
gue
i
.

X

'O »
i
i

-

e Cre Tools Bar

Tk Toww_Coe

s &
:lﬂ‘g

néa'
i'e
? e

¥

M:
f

:%
%

Project Management

Sy Esturat e

Poumcs Opuate |
L T

A R (TRE I Pweocity

3.1 Tools Bar

@ New Project - From menu File - New Project

It creates a new application. The previous one will be closed requesting a confirm for saving.
Following will be open the Window Hardware Selector:

New project x

Togets
Seect e project targat

i § & |§

NG5 NGMEVD NGO NGWARP

< Hardware

The project path [C \Promax\vibe . 4————— | Project Folder

A

Project Name

VTBII USER GUIDE

Ii]:'l] Open Project - From menu File < Open Project
Opens an existing project

H Document Save - From menu File & Document Save
Saves the current document

w
g Project Save - From menu File - Project Save
Save the current Project

E Undo - From menu Edit < Undo
Undo last operation

!:i Repat - From menu Edit - Repat
Repat last operation Undo

E Cut - From menu Edit - Cut
ut the selected element

(@]

@ Copy - From menu Edit - Copy
Copy the selected element

Lﬂ Paste - From menu Edit - Paste
Paste from clipboard

x Delete - From menu Edit - Delete
Delete the selected element

E Find and Replace - From menu Edit - Find and Replace
Find and Replace the Text

Im Project Settings - From menu Project - Project Settings
Settings of Project (See Application Configuration)

VTBII USER GUIDE

ﬁ Project Browser - From menu Project > Project Browser
Allows to show the variables, Functions and Objects declared in the current project

Fioject Biowser olyecs X

Vdes Functone Dtisoty

=R
- | Iyse ec Sy ok o jne
& Sy e pye _yhem_card_ype
| okl Sysen e yten v
e pec Jygee_verl
M= et o< e bud save
e 3ok e otnig
[Su= | e _aco Syuen_mats_saes
s | et sy _tem_setouch
:."'.ﬂ” Sysen_pu_cwsd
(SR “sya_s2_pace “arden_sre_sleve
[Owive Jysten starg(1 XD Sydten_cawr_ootd
Jnien s e e o1
[Dubred pages _Sysien podo _esen_soam o
| _nystew_sncyill Jaken_s0_Sshu
| ystew_sdoscd Nydem ¢ ol
_ystwr_sdoac! Varll
Jaster e

& Build - From menu Project - Build
Build the current project
The results are showed in the output window.

-== Conpile for VIB language --—-
Start compiling modules...

Build paginal module...Terminated
Build taskplc module...Terminated
Build pagina® module,..Terminated
Failed

frrors in the compilation (Erz:l)

Double click on error line for show the source code

@ Upload Application - From menu Project - Upload Application
Upload Application in the target by the select channel (Ethernet or R5232)

E Add/Remove Bookmark
Add or Remove Bookmark from the current line
For return to bookmark, open “Bookmarks” window and select the desired Bookmark with doubleclick

L Oucasmmed

2 Froject. Nan_Cyce Svbs

Dt Sewrth Boukunwihs Frroe it

VTBII USER GUIDE

% Remove All Bookmarks
Remove All Bookmarks .

E Go To Line

Moves the Cursor to line

ﬁ Start Debug - From menu Debug -> Start
Start the Debug session (see Debug Application)

ﬂ Stop Debug - From menu Debug -> Stop
Stop the Debug session

VTBII USER GUIDE

3.2 Project Manager

PROJECT MANAGER allows a rapid selection and navigation inseide the Application Project.
With PROJECT MANAGER all functions are easy to reach.

&' Variables Opens the variables manager
(See Type of Variables)
@ Structures Opens the structures manager

(See Structure)

g HW Config Hardware Configuration

The Hardware Configuration is based the Board used
Therefore the parameters are different for each Hardware type
(See Hardware Configuration)

@ Instances objects Show the Objects Instances
(See Object Manager)

E‘"@ Tasks Show all VTBII Tasksl
(See VTBII Tasks)

VTBII USER GUIDE

3.3 Object Manager
OBJECT MANAGER allows a rapid selection of Objects to insert in the project

3.3.1 Insert A Object

Select TAB Objects:

Project | Objects

Following all Objects will be shown

@-{J) CommMaster
w4 estuninclude
w0 Fat32
w-{J Genera
w4 Iso_NS
Kﬂ Modbus
quj Motor Control
-4) Motor Control Plus
- promax
-4 Protocols
@ﬂ Timers

3

Open the folder and add the object with double click or button%

= ¢J Genenl
| w5 cPrwm
| i 9 easTineuT

@ NGPP Flnput - 103

The object will be inserted in the Objects Window and the Properties will be shown

@ HW Conlig —ﬂ Main Cycle
[Ve [Tipe Fie il =
Bren 102 G0 Frout C/\rome © GENERALS
Descraone
Nore FASTY
2 SETTINGS
Charnes 0.1} o0
NGO roe 0

10

VTBII USER GUIDE

4 VTBII TASKS

VTBII uses Three differents TASKS.

Two tasks are Interrupt Time Type, these can interrupt the other processes.

The third Task is managed in cooperative mode, that is executed when the Interrupt Tasks are not in execution.

Task Plc Deterministic Interrupt Time
Task Time Not Deterministic Interrupt Time
Task Main Cooperative Task
VTBII . Service
KERNEL Management

TASK PLC_Cycle
High Priority
Interrupt

TASK TIME_Cycle
LOW Priority
Interrupt

11

VTBII USER GUIDE

4.1 Task Plc
The Task Plc has two section. TASK PLC_Init and TASK PLC_Cycle

4.1.1 TASKPLC_INIT
It is the FIRST task that the S.0. executes. Normally it contains all Initializations for Application (All Tasks).

4.1.2 TASKPLC_Cycle

This task is the highest priority one: it is deterministic and run at fixed time making it suitable to manage situation that need a fast
and precise response time. This task can not be interrupted by no other tasks but it can instead interrupt any other. Normally it is
used by AXIS CONTROL OBJECTS or fast PLC cycles, but it can contain every type of code sequence excluding some IFS functions
like:

AXIS INTERPOLATION (xxx.MOVETO, xxx.LINE_TO)

MANAGE OF CANOPEN SDO.

STATIC CYCLES

(see the single functions for details)

The typical sample time is 2 milliseconds that is an enough time to manage a lot of application (for example 6 AXIS interpolation),
however it can go down also under 1 millisecond when the charge of work is less stressful and for CPU with high computing power.
In this task is also managed the CAN OPEN and ETHERCAT protocol in DETERMINISTIC mode. However it is advisable that its elapsed
time doesn't exceed 90% of sample time, else we risk to slow or even to stop the other tasks.

IF THE CODE INSIDE TASK PLC BLOCKS IT ALL SYSTEM GO IN CRASH.

To verify the elapsed time of TASK PLC there are two field in DEBUG.NET application:

PLC TP and PLC TM never must exceed the sample time.

4.1.3 Note on Concurrent Programming

The use of CONCURRENT programming requires particular ATTENTION as in all MULTITASK systems. To avoid unexpected operation
it's recommended do not call the same function from INTERRUPT TASKS and COOPERATIVE TASK in the same application. In other
words the functions managed by MAIN TASK can be called without problems from PAGE TASK, but NOT ALSO from TASK TIME e
TASK PLC and vice versa.

That is because if an INTERRUPT TASK using a function occurs exactly while a COOPERATIVE TASK is running in the same function,
that could lead to abnormal operations in the application.

SHARING OF VARIABLES

Again in CONCURRENT programming can also occur some problem when variables are shared between INTERRUPT TASKS and
COOPERATIVE TASK. Practically if managing of the variable don't provide an ATOMIC ASSEMBLER INSTRUCTION, this can cause
false reading value when it is written by a TASK and read by another. According to the CPU type of the system these problems can
occur in the following type of variables:

Harwdare Type

ALL FLOAT

To overcome this problem VTB offers the possibility of a SECURE SHARING OF VARIABLES. Indeed in the variables declaration dialog
there is an apposite field to enable the secure sharing. However, because a lot of use of this facility can generate jitter problem
we recommend to use the enable of secure sharing of variables only when ABSOLUTELY NECESSARY.

The same problem could also occur when using data array shared by more process. A simple example can be the use of array to
data exchange in MODBUS protocol. These problems can arise when, for example, the writing process of data and the reading one
are asynchronous. It can happen indeed that a reading process starts when the writing one has filled the array only partially. In
this case the reading process will read a lot of new data and some from the old scan. It's evident in this situation false value
readings can occur. System isn't able to understand these situations therefore to solve it there is the needs of semaphores at
application level.

Task plc has also an INIT section. All code insert here will run only one time at system reset.

12

VTBII USER GUIDE

4.2 Task Time
The TASK Time is started after the TASK PLC. It has ONE Section

4.2.1 TASKTIME_Cycle
TASK TIME, like TASK PLC, works at fixed time. It differs from that for two features:

a) it has a lower priority and it can be INTERRUPTED by TASK PLC;

b) it hasn't limit to managing of the IFS functions of VTB.
The scan time of this task is programmable at multiple of the sampling time of TASK PLC. TASK TIME is useful for the managing of
timed cycles and with medium response time, furthermore the possibility of calling all IFS functions makes it of great utility,
ensuring constant time to software. Typical sample time can be about 5 or 10 milliseconds, with witch it's possible to manage a
complex PLC cycle with a lot of I/O channels. If the elapsed time of this task overcomes its sample time the system will continue
to work stopping the cooperative tasks but task plc will continue to run.

4.3 Task Main
The Task Plc has two section. TASK MAIN_Init and TASK MAIN_Cycle

4.3.1 TASK MAIN_INIT
It is the BEFORE the Task_Main Cycle. Normally it contains all Initializations for Task Main_Cycle.

4.3.2 TASK MAIN_Cycle

TASK MAIN is called continuously by VTB cycle running. Therefore a static cycle on TASK MAIN will stop only this TASK and the Task
Time and Task Plc will continue to Run. Its scanning time depends by the code contained in all the other TASKS. Usually this TASK
manages repetitive cycles as control of emergency or alarm states, graphic control etc. where there isn't the need for constant
time. However its scanning time can be very fast, also in the order of few microseconds, when the code inside the task is very
short.

4.4 Functions
There are two sections, Main_Functions and Main_Functions_ObjectsEvents

4.4.1 Main_Functions
This section allows to decleare the Functions visible to all tasks.

4.4.2 Main_Functions_ObjectsEvents
In this section are inserted automatically the Events instances declared by some objects
For activate an event in an Object see below:

1) Insert the Object (ex Motor Control->CSTDCANOPEN->DS402 —1.0.2)
2) By Section EVENTS (in the Object Properties)

sz, A
= &

E GENERALS
Descrizions
Nome DS4021
B CANOPEN
Nodo 1
Settngs
B SETTINGS
Abs
home _delay
Modo
Quota
Stato
Velocta
El EVENTS
OnEndMove
OnEmor

CCSCO0O0O -

3) Double Click On Events or select an existing event and press the Button "= |
OnEndMove < Duble Click

With double Clcik the event will be inserted automatically

DS4021_OnEndMove_ev

13

VTBII USER GUIDE

5 HARDWARE CONFIGURATION

In this chapter is explained all parameters for hardware configuration

5.1 NGQ/NGQx Configuration

CanOpen
Enable 0 Disabled
1 Enabled
BaudRate Baud Rate
Sync 0 Sync Message Disabled
1 Sync Message Enabled
SlowPx Set to 0.Reserved

CheckError 0 Check Errors CanOpen Disabled
1 Check Errori CanOpen CUSTOM
With this option the system doesn't perform any action but it calls some functions to
allow the customization of the managing of CanOpen configuration errors.
The functions called by the system are three and they have to be defined by the
application:

function open_cancfgerr(nodes as char) as void

nodes = Total number of nodes in the CanOpen configuration.

This function is called by the system before starting the CanOpen configuration. The
total number of the nodes in the configuration is written in the parameter nodes

function cancfgerr(node as int, err as uchar) as void
node=Number of node.
err=Result of configuration.
0 = Node correctly configured.
<>0 = Error code. See relative chapter of CanOpen functions.
This is called at the end of configuration of each node writing the result in the parameter err.

function close_cancfgerr() as void
This function is called after the end of the last node configured.

General
EnableEncoder 0 Encoders and Analog outputs Disable on NGQx (This means a NGQ)
1 Encoders and Analog outputs Enabled on NGQx (This means a NGQx)

LinkRPC
LinkType RS232 COM by managed RPC protocol for HOST PC.
0 - None RPC Link
1 - SER1/PROG this means that the DEBUG will be disabled
For Application Upload is necessary manual BOOT/RESET operation
2 - SER2
BaudRate Baud rate for RPC RS$232 (default 115.200)
StepDir
Enable Mask Enable PULSE/DIR channels (Only for NGQ) Bit mapped
Values:
Bit 0 Channel 0 Enabled Bit 1 Channel 1 Enabled
Bit 2 Channel 2 Enabled Bit 3 Channel 3 Enabled
Interpolation Mask Enable P PULSE/DIR channels in interpolation mode (Only for NGQ) Bit mapped
Values:
Bit 0 Channel 0 Enabled Bit 1 Channel 1 Enabled
Bit 2 Channel 2 Enabled Bit 3 Channel 3 Enabled

14

VTBII USER GUIDE

5.2 NGMEVO Configuration

Analog Inputs
Enable Mask Enable the analog Inputs Bit Mapped

Values:

Bit 0 Channel 0 Enabled — Digital Input 9 removed
Bit 1 Channel 1 Enabled — Digital Input 10 removed
Bit 2 Channel 2 Enabled — Digital Input 11 removed
Bit 3 Channel 3 Enabled — Digital Input 12 removed
Bit 4 Channel 4 Enabled — Digital Input 13 removed
Bit 5 Channel 5 Enabled — Digital Input 14 removed
Bit 6 Channel 6 Enabled — Digital Input 15 removed
Bit 7 Channel 7 Enabled — Digital Input 16 removed

CanOpen

Enable 0 Disabled
1 Enabled

BaudRate Baud Rate

Sync 0 Sync Message Disabled
1 Sync Message Enabled

SlowPx Set to 0.Rserverd

CheckError 0 Check Errors CanOpen Disabled
1 Check Errori CanOpen CUSTOM

(See CheckError NGQ)

General
Modality Set to 1 Reserved
Number of Expansions Number of NGMIO in the NGMEVO

LinkRPC

LinkType RS232 COM by managed RPC protocol for HOST PC.
0 - RPC Link Enabled on ETHERNET
1 - SER1/PROG this means that the DEBUG RS232 will be disabled (Only Ethernet)
For Application Upload is necessary manual BOOT/RESET operation
2 - SER2

BaudRate Baud rate for RPC RS$232 (default 115.200)

Ethernet IP IP Addres of NGMEVO (default 10.0.0.80)
For all Ethernet connections (RPC,Debug,Modbus TCP/IP)

Ethernet Mask Ethernet subnet mask (default 255.255.255.0)

Gateway Not used
LSYNC
Enable Mask Set to 0 Reserved
Prescaler Set to 6 Reserved
StepDir
Enable Mask Enable PULSE/DIR channels. Bit mapped
Values:
Bit 0 Channel 0 Enabled Bit 1 Channel 1 Enabled
Bit 2 Channel 2 Enabled Bit 3 Channel 3 Enabled
Interpolation Mask Enable P PULSE/DIR channels in interpolation mode. Bit mapped
Values:
Bit 0 Channel 0 Enabled Bit 1 Channel 1 Enabled
Bit 2 Channel 2 Enabled Bit 3 Channel 3 Enabled

15

VTBII USER GUIDE

5.3 NGWARP Configuration

CanOpen
Enable 0 Disabled
1 Enabled
BaudRate Baud Rate
Sync 0 Sync Message Disabled
1 Sync Message Enabled
SlowPx Set to 0.Rserverd

CheckError 0 Check Errors CanOpen Disabled
1 Check Errori CanOpen CUSTOM

(See CheckError NGQ)

Ethercat
Enable 0 Disabled
1 Enabled

LinkRPC

LinkType RS232 COM by managed RPC protocol for HOST PC.
0 - RPC Link Enabled on ETHERNET
1 - SER1/PROG this means that the DEBUG RS232 will be disabled (Only Ethernet)
For Application Upload is necessary manual BOOT/RESET operation
2 - SER2

BaudRate Baud rate for RPC RS$232 (default 115.200)

Ethernet IP IP Addres of NGMEVO (default 10.0.0.80)
For all Ethernet connections (RPC,Debug,Modbus TCP/IP)

Ethernet Mask Ethernet subnet mask (default 255.255.255.0)

Gateway Not used

16

VTBII USER GUIDE

6 APPLICATION CONFIGURATION
First to start a new application, is necessary to configure it.
ATIVATION VTBII CONFIGURATION

From Menu Project = Settings

Sethings

Type MNET Framenork

' ‘ ~= (@ Do not omate frameworks
NG3S =55 NGa) Wendaws 2P and hagher 25

') Wesdoms CE

NGWARF

Task Time [2| x2» -ﬂ

&) Senal @ Senal
() Tiheew) Gherwt

6.1 Type

Hardware selection. This selection is already proposed when the new project is started.
If the Hardware is changed, the current project will be saved.

Select the Hardware type and press SELECT.

6.2 General

Project General settings

6.2.1 Sampling

Execution time Tempo of | TASK PLC, EXES CONTROL,CANOPEN or ETHERCAT. Low values, can crashed the application.
Typical 2 Ms for 8 Interpolated Axes.

The TASK PLC TIME (see its time in the DEBUG APPLICATION) must not be over the 60-70% of Sampling time selected.

6.2.2 Task Time
Execution time of TASK TIME. It is referred on Multiple of TASK_PLC.

6.3 Upload Settings

Allows to settings the UPLOAD channel parameters.

6.3.1 Serial
From RS232

6.3.2 Ethernet
From Ethernet (Only NGWARP)

17

VTBII USER GUIDE

6.4 Debug Settings

Allows to settings the DEBUG channel parameters

6.4.1 Serial
From RS232

6.4.2 Ethernet
From Ethernet (Only NGWARP,NGMEVO)

6.5 Connection Settings
PC COM RS232(for RS232 connection) and IP Adddres (for ETHERNET Coonection)

6.5.1 Serial
PC RS232 port number

6.5.2 Ethernet
Ethernet IP Address
WARING
The IP Address must be appropriate to Hardware IP.
Therefore, if is present a DHCP (from Router) this must distribute a different address to IP selected in the Hardware, but anyway
the address must be the some family.
If the DHCP is not present, select the static IP on PC
Ex: IP BOARD=10.0.0.80
IP PC=10.0.0.90

6.6 .NET Framework

VTBII compiler can create a DLL COMPONENT MODEL which can be imported in .NET (dot net) projects. That allows the full control
of hardware resource directly by a PC: READ/WRITE VARIABLES, CALL FUNCTION IN REMOTE PROCEDURE CALL.
For details refer to the NG Framework manual

6.6.1 Do not create Frameworks
None .DLL framework will be create

6.6.2 Windows XP and Higher

Generate a DLL for Windows XP or higher versions (Windows 7,8,10)
Select the Framework version.

Normally for XP V 3.5, for 7,8,10 v4.5

6.6.3 Windows CE
Generate a DLL for Windows CE
Select the Framework version.

18

http://www.promax.it/file_download/ENG/NgFramework_eng.pdf.

VTBII USER GUIDE

7 TYPE OF VARIABLES

VTB can manage several types of variables which can be used in programming phase.

Commonly all VARIABLES will be allocated in the VOLATILE MEMORY (RAM) of the system and they are zeroed at system boot. In
systems equipped with NON-VOLATILE RAM (NGWARP) it's also possible to allocate them in this area, they are defined as STATIC
VAR and they will retain its value also after turn-off. VARIABLES follow the STANDARD terminology like to common programming
languages.

Furthermore, it can be declared VARIABLES referred to external component like to CANOPEN or ETHERCAT. These are managed
automatically from the system in transparent mode.

7.1 Valori Numerici

VTB manages numeric values in conventional mode as other compilators. A numeric value can be written in DECIMAL NOTATION
as well as in HEXADECIMAL NOTATION by preceding the number with the prefix Ox (ZERO X). For example the decimal number
65535 is translated with the hexadecimal OxFFFF.

FLOATING-POINT values must be written with decimal point and it can not written in hexadecimal format.

Example:
A=1236 “ assigning 1236 to variable A
A=0x4d “ assigning hexadecimal value 0x4d to variable A
‘ corresponding at decimal value 77
B=1.236 ‘ assigning floating-point value 1.236 to variable B

VTBII does not check the variable dimension with the assign value

19

VTBII USER GUIDE

7.2 Internal Variables

From Project Manager
&' Variables

..........................

Press Button:

insert the fields:

Name - Variable name

Type - Select the desired type

Shared - Select True if it is shared in other TASKS

Export - Select the class name for export to NG Framework. Clear this field for not export the variable
Description -> Variable description (optional)

These variables are declared in internal volatile RAM

TYPE DIMENSION RANGE
BIT 1 bit FromOto 1
CHAR 8 bit signed From —128 to +127
UCHAR 8 bit unsigned From 0 to 255
INT 16 bit signed From —32.768 to +32.767
UINT 16 bit unsigned From 0 to 65.535
- From —2.147.483.648
LONG 32 bit signed to +2.147.483.647
. From -1,79769313486232e308
FLOAT 64 bit (standard DOUBLE format IEEE 75) to +1,79769313486232€308
STRING Supported only as constant
VECTOR Single dimension for all variable types
except BIT type
STRUCTURE Standard declaration
POINTER Char: Uchar, Int, Uint, Long, Float
32 bit
Pointer to FUNCTIONS
DELEGATE 37 bit

20

VTBII USER GUIDE

7.3 BIT Variables

The BIT Variables are declared on an existing Internal Variable

From Project Manager

Select Tab

Choose the internal variable

Variable O ||
Press Button:d}

Automatically all Bits will be declared (based on variable dimension).

Vanable Name Description
2 9Vard

B0 VarQ_BuC ?

VB VarO_Bit! ?

VB2 VaeO_Bi2 ?

VB3 VarD_Ba3 ?

(Y Bits VarQ_Bitd ?

P EiS Var0_BitS ?

(¥ B VarQ_Ba6 ?

¥ Bt7 Varl_Bi7 ?

Inert desired Name and Description

This type of variable can have only two values: 0 or 1, normally associated to a state OFF/ON or FALSE/TRUE. The variable BIT must
always refer to an original variable which will can contain more bits.

These variables are very useful to manage FLAGS, digital I/O lines and in all cases where we need to read or write a single bit
directly.

For example declaring an INTERNAL variable named STATE of type INT (16 bit) it's possible to associate it up to 16 bit variables.

VARBIT1STATE.O (first bit of STATE)
VARBIT2STATE.1 (second bit of STATE)

VARBIT16 STATE.15 (16th bit of STATE)

If VARBIT1 = 1 " test if first bit of STATE is set
VARBIT2=1 ' set second bit of STATE
VARBIT3=0 'reset third bit of STATE

endif

A common use of these variables is the manage of the digital INPUT and OUTPUT lines of the system, as they are equipped
inside system (ex. NGIO) or they are remote channels in a CANOPEN or ETHERCAT net. That means declaring the bit variables we
shell control physically the state of these I/0 lines simply reading or writing the relative bit variable.

21

VTBII USER GUIDE

7.4 Define

The Define, is a constant value (numeric or alphanumeric), that can be used inside the source code.
When inside the code will be found the DEFINE, it will be replaced with DEFINE VALUE (like to C)

From Project Manager
<J Varables

Select Tab

Press Button:Q

Insert the fields:

Name -> DEFINE name

Type -> DEFINE return Value
Description -> DEFINE description (optional)
Example:

Var Inteme Var Bits |EDeﬁne§| Var Static | War Fixed |

o 3 | Namemultiple values | | Define multiple values
MName Type Description
Definel 15 Definel
Defined 10 Defined
If Var0=Define0 ' Like to 10
Endif
If VarO=Definel ' Like to 15
Endif

Is possible to insert multiple values with an index in the defines list, by entering data in the boxes Name multiple values e Define
multiple values in this mode:
e In Name multiple values box, enter the initial name of the define
e Inthe Define multiple values box enter the value of the define with the reference {NO..Nn} where you want to insert the
growing index. The values of NO and Nn must be respectively the start index and the final index.
Un esempio di inserimento é visualizzato nella seguente immagine:

Var Inteme | Var Bits ||Deﬁne | Var Static | Var Fixed |

Q x Mame multiple values |P_ | Define multiple values [Parameters({0..3})
Mame Type Description
Parameters({) 7
P_1 Parameters(1) 7
P2 Parameters(2) 7
P2 Parameters(3) 7

If the value of Define multiple values is not present, will be insert a default value in the list

22

VTBII USER GUIDE

7.5 Fixed Variables

Variables with FIXED ADDRESS
From Project Manager

< Varables
Select Tab .Varfixed;

Select Type:

|

Select the position for FIXED:

Press Button:LJ'}

Insert the fields:

Name - FIXED name
Export - Select the class name for export to NG Framework. Clear this field for not export the variable
Description - DEFINE description (optional)

The FIXED variables are allocated at a fixed address in the internal memory of the device which, unlike common variables, doesn't
change modifying the program. This type of variable simplifies the use of systems connected to an external HOST (ex. PC). In fact
using FIXED variables there will be no need to recompile the HOST application at each change in VTB program.

FIXED variables are always GLOBAL that is visible in all page and in all tasks.

TYPE DIMENSION RANGE
BIT 1 bit FromOto 1
CHAR 8 bit signed From —128 to +127
UCHAR 8 bit unsigned From 0 to 255
INT 16 bit signed From —32.768 to +32.767
UINT 16 bit unsigned From 0 to 65.535
o From —2.147.483.648
LONG 32 bit signed to +2.147.483.647
FLOAT 64 bit (standard DOUBLE format IEEE 75) | oM 11,79769313486232e308

to +1,79769313486232e308

The START address of FIXED area is:

NGMEVO Addr = 536874496
NGWARP Addr = 1051648
NGQ-NGQx Addr = 8389632

23

VTBII USER GUIDE

7.6 Pointers

VTB is able to manage the pointers to variables too. Pointers defines the address of allocation memory of the variables, not its
content. Some VTB functions need of pointers as parameter particularly when the function for manage arrays or strings. To define
the address of a variable it's enough insert the postfix () except for the functions.

Example:
Vi tomad Ve Bta | Defne Vir Fned
L

i Name Tyve

TeatVae LONG
‘ Vet 20) UINT
TestVar() ’refers to the address of variable TestVar
vect() ‘refers to the address of the first element of array

Pointers can be declared only to following types:
Char, Uchar, Int, Uint, Long, Float, Functions

The Pointer declaration is like to Internal Varaibles , but selecting pointer type (*)

To assign an address to the pointer it's need:
refer to the name of pointer (without brakes)
assign the desired address to pointer

To assign the value to a pointed field it's need:
refer to the pointer with square brackets

put the right index inside the brackets

assign the value

Example

Varitema = VarBes | Define VarFeed |

> %

Name Type
Poinger1 ‘LONG
Value LONG
PointerZ “LONG
Vect{10) LONG
Var LONG

Read/Write from Pointere:

Pointerl=value() ' Assign to Pointerl the addr of Value
Pointer1[0]=2000 ‘Assign to Value=2000
Var= Pointer1 [0] 'Assign to Var Value

Read/Write in Array from Pointer:

Pointer2=Vect() ‘Assign to Pointer2 the addr of Vect
Pointer2 [0]=13

Pointer2 [1]=27

Pointer2 [9]=55 ‘Assign the Array Vect from pointer
Var= Pointer2 [7] ‘Assign to Var Vect[7]

24

VTBII USER GUIDE

The pointer can be used also in the Structure.

Example
ow B
Name Typ=
= P Streutl
P sn LONG
P INT
| Varitemal VarBts | Defne Var Fixed
> &
Name Type

MyStruct Streut!

Posnter “Streut!
Pointer=MyStruct() ‘Pointer to MyStruct
Pointer ->str1=300 ‘Stri
Pointer ->str2=200 ‘Str2

As we have seen, to use pointer with the structures we need the token -

WARNING: VTBII doesn't make any control on the index of pointer therefore with pointers it's possible to write anywhere in
memory with consequent risks to crash the system.

Example:
' Varitema = VarBes | Define VarFeed |
& X
Name Type

Poinger "LONG
Value LONG
Pointer? “LONG
Vect{10) LONG
Var LONG

Pointer1=Value()
Pointerl [10]=50

The instruction Pointer1[10] = 1234 doesn't generate any compiling or run-time error, but it can cause unexpected operations.
The correct use is Pointerl [0]=50

To get the address of a function to assign to a variable we have to refer at the function simply with its name (without brackets):

Example
VarPunt=MyFun

Where MyFun is a Function decelared

25

VTBII USER GUIDE

7.7 Array

The arrays can be declared in the INTERNAL or STATIC variables and they can be defined as any type except the BIT one. The arrays
managed by VTBII are SINGLE-DIMENSION and the maximum limit depends on the free memory available. To declare an array we
have to do as for a normal variable putting after the name, between parenthesis, the desired dimension.

If there was the need to use a TWO-DIMENSION array (matrix) we have to work with STRUCTURES. Simply we have to declare a
structure with a field of type array then to declare an array of type structure.

ARRAY(10) Array of 10 elements

The first element of the array always start from 0 (zero) then:

ARRAY(0) first element
ARRAY(9) last element

Some VTB functions need the address of the array, that is specified writing the name of array followed by parenthesis with no
index inside (see also pointer).

ARRAY() refers to the memory address of ARRAY

DECLARING AN ARRAY
Name Type
Vect(20) i LONG

WARNING: VTBII doesn't make any control on the index of array therefore with it's possible to write over the array's dimension
with consequent risks of unexpected operations.

26

VTBII USER GUIDE

7.8 System Variable

Variables of type System are variables already defined by operative system, therefore we must not to declare them but they can
be used as like to variables. This is the list of the SYSTEM VARIABLES available. There are more system variables but reserved to
the system.

NOME TIPO R/W FUNZIONE
SYSTEM_PXC LONG R/W

Utilizzate nei sistemi con NGMEVO. Contengono il doppio del numero di passi generati

_SYSTEM_PYC LONG R/W i - X
dai 4 assi P/P presenti.
_SYSTEM_PzC LONG R/W
_SYSTEM_PAC LONG R/W
_SYSTEM_EMCY(8) CHAR R Contl.ene il dat! relativi al pacchetto Emergency Object del CanOpen. Viene aggiornata
tramite la funzione read_emcy().
li I8 le SDO ABORT CODE invi | ANOPEN
SYSTEM_SDOACO LONG R Conter_lgonp gli8 b_yte de eventua.e S O ABORT CODE inviato da uno slave CANO
a seguito di una chiamata alle funzioni pxco_sdodl(...) o pxco_sdoul(...). Se queste
ritornano con errore 2, nelle variabili _SYSTEM_SDOACO e _SYSTEM_SDOAC1 &
_SYSTEM_SDOAC1 LONG R

presente il codice di errore.

Contiene il tempo attuale di scansione della TASK PLC in cicli MACCHINA. Per riportarlo
in Millisecondi occorre moltiplicare il valore per una costante dipendente dal tipo di CPU.
_SYSTEM_PLC_ACT_TIME UINT R Serve in fase di DEBUG per capire la durata del TASK PLC. Questo tempo deve essere
inferiore del 30% del Parametro CAMPIONAMENTO (inserito nelle opzioni generali) per
evitare rallentamenti negli altri task.

_SYSTEM_PLC_MAX_TIME UINT R E' simile al precedente e rappresenta il picco massimo memorizzato.
_SYSTEM_VER INT R Ritorna la versione del firmware. Es. 10317 - Vers. 1.03.17
_SYSTEM_CANERR_CNTO LONG R/W Contatore errorl. I|ne? Cfamope.n Qanale 1 ‘ ‘

Vengono contati tutti gli errori di trasmissione che la linea presenta
_SYSTEM_CANERR_CNT1 LONG R/W Contatore errorl. I|ne? Cfamope.n Fanale 2 ‘ ‘

Vengono contati tutti gli errori di trasmissione che la linea presenta
_ SYSTEM_ECERR_CNT LONG R/W Contatore errori linea ETHERCAT

Vengono contati tutti gli errori di trasmissione che la linea presenta

27

VTBII USER GUIDE

7.9 Static Variables

The variables of type STATIC are declared in NON-VOLATILE RAM: they aren't zeroed at reset and maintain their value also after
turn off. They are very useful to retain data which change frequently (as encoders, counters, etc.), and which could not be saved
in flash memory (IMS). Besides they are common variables.

STATIC variables are always GLOBAL that is visible in all page and in all tasks.

TYPE DIMENSION RANGE
BIT 1 bit FromOto 1
CHAR 8 bit signed From —128 to +127
UCHAR 8 bit unsigned From 0 to 255
INT 16 bit signed From —32.768 to +32.767
UINT 16 bit unsigned From 0 to 65.535
o From —2.147.483.648
LONG 32 bit signed to +2.147.483.647
. From -1,79769313486232e308
FLOAT 64 bit (standard DOUBLE format IEEE 75) to +1,79769313486232€308
ARRAY Single dimension for all variable types
except BIT type
Pointer to FUNCTIONS
DELEGATE 32 bit
ATTENZIONE:

ONLY NGWARP CAN USE THE STATIC VARIABLES

28

VTBII USER GUIDE

7.10 Delegate

This type of variables is used to call a function by a variable. First of all the address of the function to call must be written in the
DELEGATE variable. Then we can use this variable to call the function with the instruction call_delegate. It can also be created an
array of DELEGATE variables and then call a function according to the index of the delegate.

Using of DELEGATES is very powerful because it allows the access to the functions in the fastest way without writing a long series
of conditional cycles.

WARNING: The function called by CALL_DELEGATE must be VOID both for arguments and return parameter.
VTB doesn't make any control to the initialization of the DELEGATE. Calling a delegate not initialized can go the system in CRASH

Example:
' Varintemal | VarBts Define | Var Fixad
> X
Name Type
Vae(2) DELEGATE

Init of Main (Delegate inititialization):

Var(0)=function1 ‘Assign to Var(0) Function1 Addr
Var(1)= function2 ‘Assign to Var(1) Function2 Addr
Functions declared on Main Functions:

Function functioni1() as void

Endfunction

Function function2() as void

Endfunction

Main Cycle call Delegate:

Call_delegate var(0) ‘Call Function1
Call_delegate var(1) ‘Call Function2

29

VTBII USER GUIDE

7.11 Structure

The STRUCTURES can be declared only as INTERNAL variables. The fields of a structure can be of any type except BIT and pointer.
To declare a STRUCTURE open the STRUCTURE TABLES and define the NAME of the structure and all single elements we need.

When a structure is declared, in the list of the variable types the NAME of the STRUCTURE will be showed, allowing to define a
new variable of all types declared as structure.
(See Project Manager)

% Add a New Structure

Name Type Descniption

Insert the structure name

% Remove the selected Structure

& Insert a new Item for the selected structure
Name Type Descnption
& ' Streut?
P van LONG Descr Var 1
Inert
Name Name for the structure Variable della variabile dell struttura
Type Type of Variable
Description Description (optional)

& Remove the selected Item from the structure

=% %"

Name Type
& ¢ Streut!
P s LONG
P su2 INT
& $» Struct2
P item1 CHAR
P itemt LONG

To use the elements of the structure it's necessary to write the NAME of the STRUCTURE followed by dot character (.) and by the
name of the field at which we want to refer.
It's also possible manage the structures with pointers (see Pointers).

30

VTBII USER GUIDE

Example:
‘$» Structures
Varintemal | VarBts | Define | VarFixed
TR
Name Type
Vall LONG
Val2 LONG
Val3 LONG
VarStruct Streutl

VarStructl1.Str1=13
vall= VarStruct1.Strl
VarStruct1.5tr2=23

31

VTBII USER GUIDE

8 OPERATORS

The operators of VTBII are common to other compilers.

8.1 Logic and Mathematical Operators
These are all the logic and mathematical operators available in VTBII:

OPERATOR DESCRIPTION EXAMPLE
. It identifies the begin of a group of calculation or function a=(c+b)/(x+y)
(Parenthesis fun(10,20)
+ Addition Mathematical addition a=b+c
- Subtraction Mathematical subtraction a=b-c
* Multiplication Mathematical multiplication a=b*c
/ Division Mathematical division a=b/c
. It identifies the end of a group of calculation or function a=(c+b)/(x+y)
P h
) arenthesis fun(10,20)
> Greater Greater than condition if a>b
< Less Less than condition if a= Greater Equal Greater or equal than condition if a>=b
<= Less Equal Less or equal than condition if a<=b
<> Not equal Not equal condition if a<>b
= Equal Equal condition if a=b or assignment a=b
T Logic OR OR Io'g'|c cs)?dltlon.lf(a:b) || (b=c) o
condition it's true if at least one expression is true
. AND logic condition if (a=b) && (b=c)
&& Logic AND condition it's true if both expressions are true
| OR bit Execute the OR between two value a=a[3
Bits 1 and 2 of variable a are set leaving unchanged the others
2 AND bit Execute the AND between two value a=a&3
All bit of variable a are reset except the bits 1 and 2
. Negation of an expression if /(a<>b)
! L
ogic NOT The expression is true if ais equal to b
Execute a not on all the bits of a value, all bits will change its state
a=85 a="a
~ NOT bit After NOT instruction the variable a will take the value 170
85 - 01010101
170 - 10101010
5> Shift to right The bits of the variable are shifted to left n times
& a=8 a=a>>3 After shift the variable a will take the value 1
. The bits of the variable are shifted to right n times
<<
Shift to left a=1 a=a<<3 After shift the variable a will take the value 8

32

VTBII USER GUIDE

8.2 Notes on Expressions

VTBIlI manages the mathematical expressions completely. Anyway we have to make WARNING when in the expression there are
INTEGER variables together FLOAT variables. We have to remind these rules:

1) If in the expression there is at least one variable of type FLOAT all the expression is calculated in FLOAT;

2) If the result of an expression must be FLOAT at least one variable in the expression must be FLOAT;

Look at this example:

A=10
B=4
R=A/B
According to the type of the variables VTB calculates the following results:
A B R
LONG LONG FLOAT 2
FLOAT LONG FLOAT 2,5
FLOAT FLOAT LONG 2

Enabling the Warning level of the compiler, some messages will be displayed in coincidence with the possibility of data truncation.

33

VTBII USER GUIDE

9 MATH FUNCTIONS

VTB manages a wide SET of mathematical functions.

9.1 SIN

Return the sinus of an angle in a FLOAT value.
Hardware All

Syntax
Sin (angle) as float
The argument angle can be a FLOAT value or any numeric expression which represents the angle in radians.

Example:

Used variables:

angle float

Cosec float

angle = 1.3 ‘ Define the angle in radians.
cosec = 1/ Sin (angle) ‘ Calculate the cosecant.

9.2 COS

Return the cosinus of an angle in a FLOAT value.
Hardware All

Syntax
Cos (angle) as float
The argument angle can be a FLOAT value or any numeric expression which represents the angle in radians.

Example:

Used variables:

angle float

sec float

angle = 1.3 ‘ Define the angle in radians.
sec =1/ Cos (angle) ‘ Calculate the secant.

9.3 SQR
Return the square root of a number.
Hardware All
Syntax
Sqr (humber) as float
The argument number can be a FLOAT value or any numeric expression greater or equal than zero.

Example

Used variables:

vsqr float

vsqr = sqr (4) ‘ return the value 2

34

VTBII USER GUIDE

9.4 TAN

Return the tangent of an angle in a FLOAT value.
Hardware All

Syntax

Tan (angle) as float
The argument angle can be a FLOAT value or any numeric expression which represents the angle in radiant.

Example:

Used variables:
angle float
ctan float

angle = 1.3 ‘ Define the angle in radians.
ctan = 1/ Tan (angle) ‘ Calculate the cotangent.

9.5 ATAN

Return the arctangent of a number in a FLOAT value between -1/2 and +1/2.
Hardware All

Syntax
Atan (number) as float
The argument number can be a FLOAT value or any numeric expression.

9.6 ASIN

Return the arcsin of a number in a FLOAT value.
Hardware All

Syntax
Asin (number) as float
The argument number can be a FLOAT value or any numeric expression between 1 and -1.

Example

Used variables:
angle float
var float

angle = 1.3
var = asin (angle)

9.7 ACOS

Return the arccos of a number in a FLOAT value.
Hardware All

Syntax
Acos (number) as float
The argument number can be a FLOAT value or any numeric expression between 1 and -1.
Example
Used variables:
angle float
var float

angle = 1.3
var = acos (angle)

35

VTBII USER GUIDE

9.8 ATAN2

It's similar to atan but it returns a value from -t and +1t.
Hardware All

Syntax
Atan2 (y, x) as float
The arguments y and x are of type FLOAT.

Return Value
The return value coincides with the angle whose tangent isy / x.

Example

Used variables:
x float

y float

angle float
radians float
result float

Pl float

Pl=3.141592

x=1.0

y=2.0

angle =30

radians = angle * (P1/180)

result = Tan(radians) ' Calculate the tangent of 30 degree
radians = Atan(result) ' Calculate the Arctangent of the result
angle = radians * (180/PI)

radians = Atan2(y, x) ' Calculate the Atan2

angle = radians * (180/PI);

- ABS
Return the absolute INTEGER value
Hardware All

Syntax
Abs (number) as long
The argument number can be a LONG value or any numeric expression.

Example
Used variables:
Num long

Num = -3250
Num = Abs(Num)‘ return the value 3250

36

VTBII USER GUIDE

9.9 FABS

Return the absolute FLOAT value
Hardware All

Syntax
FAbs (numero) as float
The argument number can be a FLOAT value or any numeric expression.

Example
Used variables:
Num float

Num = -3.250
Num = Abs(Num)‘ return the value 3.250

37

VTBII USER GUIDE

10 INSTRUCTIONS TO CONTROL THE PROGRAM FLOW

In VTB there are a lot of instruction to control the program flow. They are similar to other compiler and THEY ARE AVAILABLE IN
ALL THE HARDWARE TYPES.

10.1/F-ELSE-ENDIF

Allow the conditional execution of a group of instruction according to the result of an expression.

Syntax
If condition
[instruction]
Else
[instructionelse]
endif

The syntax of instruction if... else is composed by the following elements:

condition Mandatory. Any expression with the result True (value not zero) or False (value zero).
instruction List of the instruction to execute if the condition IF is TRUE.

instructionelse Optional. List of the instruction to execute if the condition IF is FALSE.

endif End of cycle IF ELSE

Notes

The instruction Select Case can be more useful when there are a lot of continuous cycles IF because it creates a source code
more readable.

Example
Used variables:
varl int
var2 int
ifvarl*var2 > 120
varl=0
else
varl=120
endif

10.2LABEL

Identifies a reference point for the GOSUB or GOTO jumps.

Syntax
Label labelname

labelname name of the reference of the LABEL.
WARNING: The LABEL instruction is OBSOLETE. It is preferred to use the FUNCTIONS.
Example
if condiition
goto labell
else
goto label2
endif
Label Labell

Label Label2

38

VTBII USER GUIDE

10.3GOSUB-RETURN

Allow to pass the control to a SOUBRUTINE and to return at the next program instruction.

Syntax
GoSub labelname

The argument labelname can be any LABEL inside the current PAGE or inside the MAIN task.

Notes
GoSub and Return can be used everywhere in the code. A subroutine can be composed by more than one Return instructions,
but the first Return founded by the program flow will act the return of the program to the first instruction after the last GoSub..

WARNING: The LABEL instruction is OBSOLETE. It is preferred to use the FUNCTIONS.

Example
if condition

gosub labell
else

gosub label2
endif

Label Labell
Return
Label Label2
Return

10.4GOTO

Allows to jump to a LABEL.

Syntax
Goto labelname

The argument labelname can be any LABEL.

Notes
Goto passes the control to a point of the program referenced by a LABEL. Unlike GOSUB the instruction RETURN isn't necessary.

WARNING: The LABEL instruction is OBSOLETE. It is preferred to use the FUNCTIONS.

Example
if condition

goto labell
else

goto label2
endif

Label Label1

Label Label2

39

VTBII USER GUIDE

10.5INC

Increments a variable of any type.

Syntax
Inc varname
The argument varname can be any variable declared in the program.

Description
Inc is the same as VAR=VAR+1 but it is executed more quickly.

Example
INC varl1'varl is incremented by 1

10.6 DEC

Decrements a variable of any type.

Syntax
Dec varname
The argument varname puo essere una qualsiasi variabile dichiarata nel programma.

Description
Dec is the same as VAR=VAR-1 but it is executed more quickly.

Example
DECvarl ‘varl is incremented by 1

10.7 SELECT-CASE-ENDSELECT

Allow to execute blocks of instructions according the result of an expression.

Syntax
Select expression
[Case condition_1
[instruction_1]] ...
[Case condition_2
[instruction_n]] ...

[Case Else
[instructionelse]]

EndSelect

The syntax of the instruction Select Case is composed by the following elements:

expression Mandatory. Any expression.

condition_n Mandatory. It can be in two forms: expression, expression To expression.
The keyword To specifies a range of value.

instruction_n Optional. Instructions executed if the expression matches the condition_n.

instructionelse Optional. Instructions executed if no condition_n is matched.

Notes

If the result of expression equals a condition_n, the following instructions will be executed until the next instruction Case or
Case Else or EndSelect.

If more than one condition_n is matched, only the first encountered will be execute. Case Else is used to execute a block of
instruction if no condition are verified. Although it isn't mandatory, it is recommended the use of Case Else statement in each
Select to manage also unexpected value of expression.

40

VTBII USER GUIDE

More instruction Select Case can be nested. At each instruction Select Case there must be an associated EndSelect.
Example
Used variables:
varl int
var2 int
var3 int
Select varl
case 10 ‘if var1=10

case var2+var3 ‘if varl=var2+var3

case 5TO 20 ‘if varl is between 5 and 20

case 1,6,8 ‘if varl=1 or var1=6 or var1=8
case else ‘ all other value of var1
Endselect

10.8 FOR-NEXT-STEP-EXITFOR

Allow the iteration of a block of instructions for a number of times according to a variable. It is a mix between BASIC and C
languages.

Syntax
For counter = init To condition [Step increment]
[intructions]
ExitFor
Next [counter]

The syntax of the instruction For...Next is composed by the following elements:

counter Mandatory. Numeric variable used as counter of iteration. It can be a BIT variable.
init Mandatory. Initial value of the counter.
condition Mandatory. lteration will continue until condition is true.
increment Optional. Value added to the counter at the end of each iteration. If it isn't specified it will
assume the value 1. It can be any numeric expression and can assume any value positive as well
as negative.
instructions Optional. Block of instructions to execute during the iteration.
ExitFor It is used to force the stop of the iterations, the program will continue from the line

immediately after the instruction Next.

Notes
It is possible to nest more cycles For...Next Assigning to each cycle a different counter:

Examples
For1=1ToI<10
ForJ)=1To J<10
For K=1 To K<10

Next K
Next J

41

VTBII USER GUIDE

Next |

For var1=0 to var1<8 ‘Repeat 8 times
Next var:i '

For var1=1 to varl<var4 step var3

Next var..l. .

For var2=1 to var2<=10

Next var;

For var1=10 to varl<var3*var4 step —1

Next varl

10.9 WHILE-LOOP-EXITWHILE

Allow the execution of a block of instructions until a condition is true.
Syntax
While condition
[instructions]
ExitWhile
Loop

The syntax of the instruction While...loop is composed by the following elements:

condition Mandatory. Any expression with the result True (value not zero) or False (value zero).
instructions Optional. Block of instructions executed until condition is true.
ExitWhile It is used to force the stop of the cycle, the program will continue from the line immediately

after the instruction Loop.
Notes
If the condition is True, the block of instruction will be executed then yhe cycle will be repeated.
More cycles While...loop can be nested at any level. Each instruction loop will correspond to the more recent instruction While.
Example
Used variables:
Varl int

while var1<10

loop

42

VTBII USER GUIDE

11 FUNCTIONS

VTB manages functions with the same syntax as VISUAL BASIC. It exist a limitation in the declaration of internal variables: they can
not be ARRAYS, STRUCTURES or BITS.

11.1 Declaration of a function
Syntax
function function_name(par_1 as int, par_2 as char,, par_n as *long) as function_type
dimvarasint ‘local variables

‘body of the function

function_name = return_value
endfunction

The syntax of a function is composed by the following elements:

function Mandatory. Keyword identifying the begin of a function.

function_name Mandatory. Unambiguous name of the function chosen by programmer.

par_1...par_n Optional. They are the parameter passed to the function. If no parameter have to be
passed (VOID) there must be nothing inside the parenthesis.

function_type Mandatory. It defines the data type returned from the function. If no data have to be
returned write as void.

local variables Optional. Local variables are allocate at the moment when function is called and

then destroyed when it returns.
They can be of any types except ARRAYS, STRUCTURES or BITS.

body of the function Optional. Block of instruction execute by the function.
function_name-=... Optional. It assigns the value returned from the function.
endfunction Mandatory. Keyword to identifying the end of the function.
Notes

A function can be called simply writing its name passing to it the eventual parameters declared.
To return from the function in any moment it can be used the instruction return.
The assignment Function_Name = doesn't cause the return from the function but only the assignment of the return value.

Example:

Used variables:
result as int
number_a as int
number_b as int

Page Function of Main task (functions declaration):

function int_average(number_1 as int, number_2 as int) as int
dim temp as int
temp=(number_1+number_2)/2
int_average=temp

endfunction

Anywhere in the source code (function calling):
number_a=13

number_b=33

result=int_average(number_a, number_b)

43

VTBII USER GUIDE

11.2 Internal Function variables

Syntax
Dim varname as type

The syntax of instruction dim is composed by the following elements:

varname Mandatory. Name of the variable.
type Mandatory. Type of the variable. It can be of any types except ARRAYS, STRUCTURES or BITS.
Example

dim var as long
dim var1 as uint
dim var2 as float

44

VTBII USER GUIDE

12 SYSTEM FUNCTIONS

VTB provides a wide LIBRERY to a complete management of the hardware devices. Some function can be available only for some
type of hardware

12.1FUNCTIONS FOR THE SERIAL PORT CONTROL

All Promax hardware devices have 1 or 2 serial channel available to the application.

In VTB there are some object to manage the common serial protocol, for example MODBUS protocol both MASTER and SLAVE.
However it's possible to use one serial channel to customize the protocol.

To do that there are some API function which always refer to the SECOND SERIAL PORT of the hardware.

12.1.1 SER_SETBAUD
Programming the BaudRate of the second SERIALE PORT.

Hardware All
Syntax
SER_SETBAUD (long Baud)
Parameters
Baud Value of Baud Rate. The standard value are:

1200-2400-4800-9600-19200-38400-57600-115200

12.1.2 SER_MODE
Programming the mode of the second SERIAL PORT. If this function is never called, by default the port is programmed with: No
parity, 8 bits per character, 1 stop bit.

Hardware All
Syntax
SER_MODE(char par, char nbit, char nstop)
Parameters
par Parity (O=no parity, 1=odd parity, 2=even parity)
nbit Number of bits per character (7 or 8)
nstop Number of stop bits (1 or 2)
Example
ser_mode(1,8,2) ‘ Program the 2nd serial port with:

‘ ODD-PARITY, 8 BIT/CHAR 2 STOP-BIT

12.1.3 SER_GETCHAR
Reads the receive buffer of the serial port. It doesn't wait for the presence of a character.
Hardware All

Syntax
SER_GETCHAR () as int

Return value:
-1 No character is in the buffer
>=0 Code of the character read from the buffer

45

VTBII USER GUIDE

12.1.4 SER_PUTCHAR
Sends a character to the serial port.

Hardware All
Syntax
SER_PUTCHAR (int CodeChar)
Parameters
CodeChar Code of the character to send

12.1.5 SER_PUTS
Sends a string of characters to the serial port. The string must be ended with the character 0 (NULL).
Hardware All

WARNING: This function can not be used in a BINARY transmision but only with ASCII transmision.

Syntax
SER_PUTS (char *str)
Parameters
*str Pointer to the string
Example
Ser_puts("TEXT MESSAGE") ‘ Send the string TEXT MESSAGE
Strcpy(Vect(),"MESSAGE1") ‘ Copy the string MESSAGE1 to Vect
Ser_puts(Vect()) ‘Send again the string TEXT MESSAGE

12.1.6 SER_PRINTL
Formatting print of an INTEGER value.

Hardware All
Syntax
SER_PRINTL (const char *Format, long Val)
Parameters
Format String corresponding to the format to be printed
Val Any integer value or expression

Avalaible formats

it Print a fixed number of characters 23456
it Force the print of decimal point 123.456
+HitH Force the print of the sign +1234
HO.H# Force the print of a ZERO 0.12
Xt Print in HEXADECIMAL format F1A3
Bh#H# Print in BINARY format 1011
Example

var=12345

ser_printl(“###.#4",var) ‘ It will be printed: “123.45”

var=2

ser_printl(“###.#4”,var) ‘ It will be printed: “ . 2”
ser_printl(“###.00”,var) ‘ It will be printed: “ .02”
ser_printl(“##0.00%var) ‘ It will be printed: “ 0.02”

46

VTBII USER GUIDE

12.1.7 SER_PRINTF
Formatting print of a FLOAT value. It is the same as ser_printl but use a float value

Hardware All
Syntax
SER_PRINTF (const char *Format, float Val)
Parameters
Format String corresponding to the format to be printed
Val Any integer value or expression

12.1.8 SER_PUTBLK

Sends a precise number of characters to the serial port. Unlike the function ser_puts it allows to send also the character with 0
code enabling the managing of binary protocols, furthermore it starts the background transmission setting in appropriate mode
the RTS signal useful to work with RS485 lines.

Hardware All

WARNING: This function allows to manage BINARY and RS485 protocols.

Syntax
SER_PUTBLK (char *Buffer, int Len)
Parameters
*Buffer Pointer to the data buffer to send
Len Number of bytes to send
Example
Ser_putblk(Vect(),11) ‘Send 11 bytes of array vect

12.1.9 SER_PUTST
Reads the state of background transmission started by ser_putblk.
Hardware All

Syntax
SER_PUTST () as int

Return value:
-1 Transmit error
>=0 Number of characters to be transmitted

Example

Ser_putblk(Vect(),11) ‘Send 11 bytes

while Ser_putst() ‘ Wait for the complete transmission
loop

47

VTBII USER GUIDE

12.2 MISCELLANEOUS API FUNCTIONS

12.2.1 GET_TIMER
Reads the system timer in units of TASK PLC (scan time).
Hardware All

Syntax
Long GET_TIMER ()

Return value:
Value of the system timer in sampling units

Some defines are automatically generated by VTB to adapt the application at the scan time:
TAU Scan time of TASK PLC in milliseconds (INTEGER value)
TAUFLOAT Scan time of TASK PLC in milliseconds (FLOAT value)
TAUMICRO Scan time of TASK PLC in 0.1 milliseconds

Example

Used variables:

Tick long

Tick=Get_timer() ‘ Get initial value of timer
while Test_timer(Tick,1000/TAU) ‘ Waiting for 1 second
Loop

12.2.2 TEST_TIMER
Compares the system timer with a value. It is used together the function get_timer to make timing.
Hardware All

Syntax

char TEST_TIMER (long Timer, long Time)
Parameters
Timer Initial value of system timer
Time Time to compare

Return value:
1= time elapsed
=time not elapsed

Example

Used variables:

Tick long

Tick=Get_timer() ‘ Get initial value of timer
while Test_timer(Tick,1000/TAU) ‘ Waiting for 1 second
Loop

12.2.3 ALLOC
Dynamic allocating of memory area.

Hardware NGWARP
Syntax
ALLOC (Long Mem) as long
Parameters
Mem Total amount of memory to be allacated

48

VTBII USER GUIDE

Return value:
<>0 Pointer to the allocated memory
0 Allocation error

Example
Pnt As *Char
N as Long
Pnt=Alloc(3000) “ Alloc 3000 byte of memory
FOR N=0 to N<3000
PUNT[N]=N
NEXT N

12.2.4 FREE
Frees the a memory area previously allocated with alloc.
Hardware NGWARP

Syntax
Free (Char *Pnt)

Parameters
Pnt Pointer to the memory to free

Example
Pnt As *Char

Pnt=Alloc(3000) ‘ Alloc 3000 bytes of memory

Free(pnt) ‘ Free the memory

12.2.5 SYSTEM_RESET
Executes a software RESET on the hardware.

Hardware All
Syntax
SYSTEM_RESET (Char mode)
Parameters
mode =0 Executes a normal RESET running the application

=1 Executes a RESET putting device in BOOT state

49

VTBII USER GUIDE

12.3API FUNCTIONS FOR MANAGING OF STRINGS

VTB doesn't use STRING variables, to manage them there are some apposite functions similar to the “C” language.

12.3.1 STRCPY
Copies the string pointed by SOURCE into the array pointed by DEST. The string must terminate with the character 0 (NULL).
Hardware All

Syntax
STRCPY (Char *Dest, Char *Source)

Parameters
Dest Pointer to destination
Source Pointer to source

Example

Used variables:

Dest(10) char

Dest1(10) char

strcpy(Dest(),”My Text”) ‘ copy the string “My Text” in dest
strcpy(Dest1(),Dest()) ‘copy the string “My Text” in dest1

12.3.2 STRLEN
Returns the length of a string.

Hardware All
Syntax
STRLEN(Char *Str) as int
Parameters
Str Pointer to the string

Return value:
Length of the string.

Example

Used variables:

Len int

Len=StrLen(”My Text”) ‘return value 7

12.3.3 STRCMP
Comparing of two strings.

Hardware All
Syntax
STRCMP(Char *Str1, Char *Str2) as char
Parameters
Strl Pointer to the first string
Str2 Pointer to the second string

Return value:

0 Equal strings
< String Str1 less than Str2
>0 String Str1 greater than Str2

50

VTBII USER GUIDE

12.3.4 STRCAT
Appends a copy of the source string to the destination string.

Hardware All
Syntax
STRCMP(Char *Dest, Char *Source)
Parameters
Dest Pointer to destination
Source Pointer to source
Example
Used variables:
Str(30) Char
Strepy(Str(),”My “)
StrCat(Str(),” Text”) ‘ str will contain “My Text”

12.3.5 STR_PRINTL
Converts an INTEGER variable to a characters STRING.

Hardware All
Syntax

STR_PRINTL(Char *Dest, Char *Format, Long Val)
Parameters
Dest Pointer to the destination string
Format String corresponding to the format to be printed
Val Any integer value or expression

Avalaible formats

it Print a fixed number of characters 23456
it Force the print of decimal point 123.456
+HitH Force the print of the sign +1234
HO.H# Force the print of a ZERO 0.12
Xt Print in HEXADECIMAL format F1A3
BHiH# Print in BINARY format 1011
Example

var=12345

STR_Printl(“###.##",var) ‘ It will be printed: “123.45”

var=2

STR_Printl (“###.##”,var) ‘ It will be printed: “. 2”
STR_Printl (“###.00”,var) ‘ It will be printed: “.02”
STR_Printl (“##0.00”,var) ‘ It will be printed: “ 0.02”

12.3.6 STR_PRINTF
Converts a FLOAT variable to a characters STRING.

Hardware All
Syntax

STR_PRINTF(Char *Dest, Char *Format, Float Val)
Parameters
Dest Pointer to the destination string
Format String corresponding to the format to be printed
Val Any float value or expression

51

VTBII USER GUIDE

Avalaible formats

HitHHE Print a fixed number of characters 23456
Hith HiH Force the print of decimal point 123.456
+iHHH Force the print of the sign +1234
H#O.#H# Force the print of a ZERO 0.12
Xt Print in HEXADECIMAL format F1A3
Bttt Print in BINARY format 1011

12.4FUNCTIONS FOR AXES INTERPOLATION

The axis interpolation functions are contained in an OBJECT in the CLASS COBJINTERPOLA. In this chapter are descriped this
function with the primitive name. Remember to put the prefix of the OBJECT NAME. If, for example the object is named obj the
function moveto will must be called as obj.moveto.

12.4.1 PROPERTY
This is the list of the common properties of the OBJECT COBJINTERPOLA.

N.assi Number of axis to be interpolate. It can be changed only at VTB environment.
A DEFINE named Objname.Nassi is automatically generated with this value.
N.tratti Number of elements in the movement buffer. It can be changed only at VTB environment

and must have a value as power of 2 (4, 8, 16, etc.). A DEFINE named Objname.Ntratti is
automatically generated with this value.

.vper Value for the changing of the speed “on-fly”. Together Div.vper form a ratio: when it is 1 the
speed corresponds to the set one.
Div.vper Divisor of vper. It can be changed only at VTB environment.

Abilita arcto Usually it is set to 1, if O the circular interpolation functions will be not avalaible. It is used to
short the code size. It can be changed only at VTB environment.

.acc Acceleration and deceleration. During the execution of ramps, at each sample (TASK PLC) the speed, as
unit/sample is incremented (o decremented) of this value. Default value 10.

.sglr Threshold of the radius error. Default value 10.

.sglp Threshold edge 2D as tenth of degree. It is used by moveto and lineto to calculate the

presence of an edge on the working plane. Default value 10.(20 degrees).
.sgl3d(NASSI) Threshold edge 3D. Default value 0.2 (for all axis).
.pc(NASSI) Actual calculated value of the axis position.
.cmd Output of virtual axis managed by setcmd.

12.4.2 MOVETO
Movement with linear interpolation. The interpolation is executed at speed vel. The parameter mode defines if the axis have to
stop in the position or continue with the next movement. To do that there is a apposite BUFFER where movement are latched.
Hardware All

Syntax
.MOVETO(Long Vel, Char mode, Long *PntAx) as char
Parameters
Vel Velocity of interpolation as unit/sample
mode Flag to control the stop before the next movement
mode=0 never stop
mode=1 always stop at the end of movement
mode=2 stop only on edge 3D (sg/3d)
mode=3 stop only on edge 3D (sgip)
PntAx Pointer to the array of the axis position as unit

Return value
Char 0 Command not written in the buffer (buffer full)
1 Command written in the buffer

52

VTBII USER GUIDE

Notes

Moveto is usually used to interpolate more than 2 axes. The speed vector is distributed on all axes to be interpolated. When
mode=2 it is calculated the presence of a multidimensional edge according to the values in sgl3d. When mode=2 the test of edge
is made only on the axis of the working plane and according to the value in sglp. If the comand isn't written in the BUFFER, we
have to wait and repeat otherwise it will be lost.

Approximative reference values of parameter SGL3D

THRESHOLD in DEGREE VALUE OF SGL3D (min-max)
5 60-90
10 125-175
20 250-350
30 300-500
45 400-700

Example (object name = OBJ)

Used variables:

VectAssi(4) long

Vel long

Test char

o ok ok ok ok 3k 3k ok o o ok ok ok 5k 3k 3 A ok ok ok ok ok 3k 3k 3k ok o ok ok ok ok ok 5k ok ok ok ok ok ok 5k ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok %k ok K ok ok ok ok

'Fast interpolation of several segments on axis X,Y holding Z and A stopped
o ok ok ok ok 3k ok ok o o ok ok 5k 5k %k o ok ok ok ok ok 5k 3k 3k 3 ok o ok ok ok ok 3k 3k ok o ok ok ok ok 5k 3k o ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok 5k %k 3k ok ok ok ok ok ok %k %k Kk Kk K
vel=1000

VectAssi(0)=1000 'X

VectAssi(1)=2000 'Y

VectAssi(2)=0BJ.pc(2) 'Z remain stopped

VectAssi(3)=0BJ.pc(3) ‘A remain stopped

muovi()

VectAssi(0)=4000 'X

VectAssi(1)=6000 'Y

VectAssi(2)=0BJ.pc(2) 'Z remain stopped

VectAssi(3)=0BlJ.pc(3) ‘A remain stopped

muovi()

VectAssi(0)=5000 'X

VectAssi(1)=2000 'Y

VectAssi(2)=0BJ.pc(2) 'Z remain stopped

VectAssi(3)=0BJ.pc(3) ‘A remain stopped

muovi()
IS SIS SIS SIS L LS E 2

‘ Movement function waiting if the buffer is full
© o sk o ok o ok o ok o o ok o ok o ok ok ok ok o ok e ok o o ok e ok ke ok ok o ok e ok o o ok e ok ke ok ok ok ok e ok ke ok ok e ok ok ok ok ok R
Function muovi() as Void
Dim test as Char
Label Move
test=0bj.moveto(vel,3,VectAssi())
if test=0
goto Move
endif
EndFunction

53

VTBII USER GUIDE

12.4.3 LINETO

Lineto interpolates the axis distributing the vector speed ONLY ON THE AXES OF THE CURRENT WORKING PLANE. The other axis
will be TRANSPORTED.

The function is useful to manage TANGENTIAL AXIS such as cutting machine, where the blade have to be transported to increasing
the fluidity of the movement. The eventual stop of axis is calculated according to the threshold value in sglp. If the resultant edge
is less or equal than this threshold axis don't stop in the position but continue filleting the two segments.

Hardware All

Syntax
.LINETO(Long Vel, Long *PntAx) as char
Parameters
Vel Velocity of interpolation as unit/sample
PntAx Pointer to the array of the axis position as unit

Return value
Char 0 Command not written in the buffer (buffer full)
1 Command written in the buffer

Notes
Lineto, unlike Moveto, doesn't distribute the velocity on all enables axis, but only on the working plane making this function not
able to tridimensional interpolation.

If the edge is less or equal than SGLP axis don't stop

Example (object name = OBJ)

Used variables:

VectAssi(4) long

Vel long

Test char

‘ Fast interpolation with tansported third axis
vel=1000

VectAssi(0)=1000 'X

VectAssi(1)=2000 'Y

VectAssi(2)=100 'Z transported
VectAssi(3)=0BJ.pc(3) 'A remain stopped
muovif()

VectAssi(0)=4000 'X

VectAssi(1)=6000 'Y

VectAssi(2)=200 'Z transported
VectAssi(3)=0BJ.pc(3) ‘A remain stopped
muovi()

VectAssi(0)=5000 'X

VectAssi(1)=2000 'Y

VectAssi(2)=300 'Z transported
VectAssi(3)=0BJ.pc(3) ‘A remain stopped
muovif()

CRRRKRKFKFRF KRR KRR KRR RRRKRRRRRRRRFRKRF R KRR R

54

VTBII USER GUIDE

‘ Movement function waiting if the buffer is full
CokokokokokkkkkkkkokkkkkKKKKkkkkKKKKkkkkkkkkkKKKKkkkkkRkKKKKkkkK KK
Function muovi() as Void
Dim test as Char
Label Move
test=0bj.lineto(vel,VectAssi())
if test=0
goto Move
endif
EndFunction

12.4.4 ARCTO

Movement with CIRCULAR interpolation on the axes of the current WORKING PLANE. Two axes execute a CIRCULAR interpolation
while the others are interpolated in LINEAR mode. As function LINETO, the property sglp defines the edge threshold for axis
stopping. The direction of rotation is determined by the parameter mode.

Hardware All
Syntax
.ARCTO(Long Vel, Char mode, Long *PntAx, Long CX, Long CY) as char

Parameters
Vel Velocity of interpolation as unit/sample
mode Direction of rotation

mode=2 CW interpolation

mode=3 CCW interpolation
PntAx Pointer to the array of the axis position as unit
Cx,CY Coordinate X,Y (axis of the working plane) of the CENTER

Return value

Char 0 Command not written in the buffer (buffer full)
1 Command written in the buffer
-1 Radius error (dipends by sglr)

Note

Arcto executes a CIRCULAR interpolation ON WORKING PLANE while the other axis are interpolated in LINEAR MODE.

Example (object name = OBJ)

Used variables:

VectAssi(4) long

Cx long

Cy long

Vel long

o ok ok ok ok % % o o o ok ok 5k 5k % % ok ok ok ok ok 5k 3k 5k 3k ok o ok ok ok ok 3k 5k ok ok ok ok ok ok ok 5k ok ok ok ok ok ok %k Kk ok ok ok ok ok ok ok
'Circular interpolation CW on X,Y Zand A

'to realize the programmed arc the axis X and Y must be in precise positions, for Example at 0,2000
€3k 3 o o ok ok ok ok ok ok o o ok ok ok ok ok ok o o ok
vel=1000

VectAssi(4) long

VectAssi(0)=1000° final position X

VectAssi(1)=2000° final position Y

VectAssi(2)=5000° final position Z

VectAssi(3)=1000° final position A

Cx=500 ‘center X

Cy=500 ‘centerY

muovi()

Function muovi() as Void

Dim test as Char

55

VTBII USER GUIDE

Label Move
test=px_arcto(vel,2,VectAssi(), Cx, Cy)
iftest=0

goto Move
endif
EndFunction

12.4.5 SETCMD

This function allows the synchronization of commands with the axis movement. In fact because of BUFFER OF AXIS MOVEMENT
the interpolation functions don't wait the execution of the command but write it in the buffer. This implies the impossibility to
command, for example, the digital output in a precise point of the path if axis don't stop in each position. This function enables
the writing of a command value in the buffer when a interpolation function is called (moveto, lineto, arcto), it will be written in
cmd at the instant the movement starts.

Hardware All

Syntax
.SETCMD(Long CMD)

Parameters
CMD Value of the command

Example
muovi()
OBJ.setcmd(10)
muovi()
OBJ.setcmd (20)

‘Insert the following code in the TASK PLC
if OBJ.CMD=10

endif
if OBJ.CMD=20

endif
12.4.6 SETPIANO

Selects the current working plane on desired axis. By default the plane is set on the first two axis X, Y (ax1=0, ax2=1). Ax1 can not
be equal to ax2.

Hardware All
Syntax

.SETPIANO(Char Ax1, Char Ax2)
Parameters
Ax1 Index of the first axis of the plane
Ax2 Index of the second axis of the plane
Note

The WORKING PLANE selects the axis for the CIRCULAR interpolation, for calculation of the edge 2D (sglp) and for calculation of
the SPEED VECTOR in the function LINETO.

Example

Obj.setpiano(0,1) 'select the plane on axis X and Y
Obj.setpiano(1,2) 'select the plane on axis Y and Z
1 STOP

Stops axis with the programmed deceleration (acc) waiting for the complete execution (axis stopped).
STOP is used to stop the axis before the TARGET point, programmed with MOVETO, LINETO or ARCTO, is reached. The movement

56

VTBII USER GUIDE

buffer will be emptied.

Hardware All
Syntax

.STOP()
Notes

STOP, unlike FSTOP, waits the axis are stopped, for this IT MUST NOT BE CALLED IN TASK PLC.

12.4.7 FSTOP

Stops axis with the programmed deceleration (acc) without waiting for the complete execution (axis stopped).

FSTOP is used to stop the axis before the TARGET point, programmed with MOVETO, LINETO or ARCTO, is reached. The movement
buffer will be emptied.

Hardware All

Syntax
FSTOP()

Note
FSTOP, unlike STOP, doesn't wait the axis are stopped, for this IT CAN BE CALLED IN TASK PLC.

12.4.8 MOVE
Returns the state of the interpolation.
Hardware All

Syntax
.MOVE() as char

Return value
char 0 No interpolation is running
1 Interpolation is running

Note
MOVE retunrs 0 only the axis are stopped and the movement buffer is empty.
ATTENZIONE: MOVE tests only the DEMAND POSITION of AXIS.

Example

Muovi() ‘start interpolation

while Obj.move() ‘wait for complete execution
endif

12.4.9 PRESET
Preset the AXIS position without move them. Axis will assume the position as passed by parameters.
Hardware All

Syntax
.PRESET(long *Pos)
Parameters

Pos Pointer to the array of the position value to preset

Note
Keep in mind these rules:

57

VTBII USER GUIDE

— AXIS MUST BE STOPPED
— CHANGING INSTANTLY THE POSITION IT OCCURS A PARTICULAR SEQUENCE TO AVOID THE PHISICAL AXIS MOVES
ROUGHLY

For example WHEN USING THE CANOPEN AXIS IT NEEDS:
— REMOVING THE CANOPEN FROM THE INTERPOLATION MODE
— PRESETTING THE CANOPEN AXIS BY METHOD .HOME
— PRESETTIN THE INTERPOLATOR WITH FUNCTION PRESET(pos())
— SETTING AGAIN THE CANOPEN AXIS IN INTERPOLATION MODE

Example with the axis X as CanOpen (object name AxisCan)
Used variables:

PresetValue(3) as long

AxisCan.start=0 ' remove the start condition

AxisCan.modo=0 ' set the position mode (remove from interpolation mode)
AxisCan.home=1000 ' preset of axis at 1000

PresetValue (0)=1000 ' set the preset value in the position array for X
PresetValue (1)=0BJ.pc(1) "value to not modify the Y position

PresetValue (2)=0BJ.pc(2) 'value to not modify the Z position
OBJ.PRESET(PresetValue ()) ' preset of the interpolator

AxisCan.modo=2 ' set the Interpolation Mode

AxisCan.start=1 'start

In similar way the same problem can occur using the STEP/DIR axis. Refer to the chapter of STEP/DIR channels for a correct preset
of them.

12.5 CANOPEN FUNCTIONS

This group of functions allow the management of CANOPEN line at application level. A lot of library OBJECTS use these functions
to make it more simple but in some cases it is necessary using the primitive functions directly.

12.5.1 PXCO_SDODL
This function allows to send data to a node of the canopen net using the protocol SDO. It is supported only the SDO EXPEDITED
mode allowing to send up to 4byte of data length.

Hardware All
Syntax
PXCO_SDODL(char node, unsigned index,unsigned char subidx,long len,char *data) as char
Parameters
Node Node ID of the SLAVE to whch send data
Index, subindex Address in the Object-Dictionary of the data to be written
Len Number of bytes to send
*data Pointer to the data to send

Return value

char 0 No error

<>0 Communication error

=2 The node responded with a SDO ABORT CODE, calling the function read_sdoac in the system
variables _SYSTEM_SDOACO e _SYSTEM_SDOACO will be available the relative error code.

WARNING: Cause the different allocation of bytes inside variables be careful to set the length corresponding to the variable
type passed by pointer.

Example
Used variables:

58

VTBII USER GUIDE

value int
Ret char
value=100
Ret=pxco_sdodI(1,2000,0,2,value()) ‘node=1, index=2000, subidx=0,
'len=2 byte, value=100

if Ret<>0 ‘test if error occurs

if Ret=2

read_sdoac()‘read eventual SDO ABORT CODE

endif

endif

12.5.2 PXCO_SDOUL
This function allows to read data from a node of the canopen net using the protocol SDO. It is supported only the SDO
EXPEDITED mode allowing to read up to 4byte of data length.

Hardware All
Syntax
PXCO_SDOUL(char node, unsigned index,unsigned char subidx,char *dati) as char
Parameters
Node Node ID of the SLAVE to whch send data
Index, subindex Address in the Object-Dictionary of the data to be written
*data Pointer to the data to send

Return value

char 0 No error

<>0 Communication error

=2 The node responded with a SDO ABORT CODE, calling the function read_sdoac int the system
variables _SYSTEM_SDOACO e _SYSTEM_SDOACO will be available the relative error code.

WARNING: Cause the different allocation of bytes inside variables be careful to use the variable passed by pointer of the type
corresponding to the length of the data to be read.

Example
Used variables:
value int
Ret char
Ret=pxco_sdoul(1,2000,0,value()) 'node=1, index=2000, subidx=0,
'value=data read
if Ret<>0 ‘test if error occurs
if Ret=2
read_sdoac()‘read eventual SDO ABORT CODE

endif

endif

12.5.3 READ_SDOAC

Reading of the SDO ABORT CODE sent by a node in the canopen net as answer to a request done with the function PXCO_SDODL
or PXCO_SDOUL. The read code will be written in the system variables _SYSTEM_SDOACO e _SYSTEM_SDOAC1.

Refer to the DS301 specific of the CAN OPEN for the code error values.

Hardware All

59

VTBII USER GUIDE

Syntax
READ_SDOAC()

-2 PXCO_SEND

Sending of a CAN frame at low level. This function allows to send in the net a CAN frame with a desired COB-ID and DATS. For
example it's possible to send manually PDO frames, HEART-BEAT frames, etc.

Should be specified the manage of PDO is managed AUTOMATICALLY by the CANOPEN CONFIGURATOR.

Hardware All

Syntax
PXCO_SEND(int id, char Len,char *Data) as char
Parameters
Id COB-ID value
Len Number of data to send
*Data Pointer to the data buffer

Return value
char 0 No error
<>0 Communication error

Example

Used variables:

value int

Ret char

value=100

Ret=pxco_send(0x201,2,value()) ‘Send a PDO (cob-id=0x201) with 2 byte
if Ret<>0 ‘test if error occurs

endif

12.5.4 PXCO_NMT
Sending of a NMT frame of the CAN OPEN. NMT protocol allows to set the state of the nodes in the net. Remind that all the nodes
correctly configured (canopen configurator) are automatically set in START state.

Hardware All
Syntax
PXCO_NMT/(char state, char node) as char

Parameters
state State to set:

1 = START NODE

2 = STOP NODE

128 = PRE-OPERATIONAL

129 = RESET NODE

130 = RESET COMUNICATION
node Number of the node

Return value
char 0 No error
<>0 Communication error

Example
Used variables:
pxco_nmt(2,1) ‘Setin STOP the node 1

60

VTBII USER GUIDE

12.5.5 READ_EMCY

Reads the last EMERGENCY OBJECT frame sent by a CAN OPEN node.

The emergency code is written in the system array _SYSTEM_EMCY(8) and it will contain all the 8 bytes of the EMERGENCY OBJECT
frame as from the DS301 specific of the CAN OPEN. Usually it is called cyclically. The emergency code depends by type of connected
device, therefore refer to its manual.

Hardware All

Syntax
READ_EMCY() as char

Return value

char 0 No error
<>0 Node that generated the emergency object.
_SYSTEM_EMCY
0 1 2 3 4 5 6 7
Error -
Emergency Error Code . Manufacturer specific Error Code
Register

WARNING

The system doesn't buffer more than one message, then if more EMERGENCY OBJECT are sended along a single task plc, only
the last will be read.

An EMERGENCY OBIJECT non significa che effettivamente ci sia un nodo in emergenza. The DS301 specific provide that an
EMERGENCY OBJECT are send also on alarm reset. Furthermore some devices can be send this frame at start up.

Example

Used variables:
Err Long
NodeErr Char

function Alarm() as void
NodeErr=read_emcy()

if NodeErr=0 ' no error
return
endif
err=(_SYSTEM_EMCY(7)&0xff) ' Read 4 byte of Manufactured specific
err=err<<8 ' field masking eventual bit not
err=err | (_SYSTEM_EMCY/(6)&0xff) "interested
err=err<<8
err=err | (_SYSTEM_EMCY/(5)&0xff)
err=err<<8

err=err|(_SYSTEM_EMCY(4)&0xff)
endfunction

12.6 DATA SAVING FUNCTIONS

All hardware are equipped with several type of memory usable for DATA SAVING. According to the type of memory (Fash, Fram,
etc.) some rules are to be implemented.
For example a FLASH memory has a maximum number of writing, block erase, etc.

12.6.1 IMS_WRITE

Writes in the internal FLASH at the address contained in ADDR, the data pointed by Punt for a total of NBYTE of data.

The FLASH memory is managed in BLOCKS of 256 bytes, for this it's recommended to write multiple of 256 bytes. That because
also writing less than 256 bytes the entire BLOCK is erased, therefore to avoid the loss of data it needs at beginning to read all the

61

VTBII USER GUIDE

block, save the interested data and overwrite again all the block. The systems NGWARP or PEC70 have enough FLASH memory to
be used without problems in blocks of 256 bytes also there is the need of less data.

Using the NGM13,NGMEVO,NGQ,NGQXx, this function works on a FRAM memory which can be managed at single BYTE.
Hardware All

Syntax

IMS_WRITE(char *Punt, long Addr, long Nbyte) as char
Parameters
Punt Pointer to data buffer to be written
Addr Start address in the reserved area of the device
Nbyte Number of bytes to be written

Return value:

Char 0 No error
<>0 Writing error
Example
Used variables:
Vett(10) long

Ims_Write(Vett(),0,40) ‘ write 40 bytes (10 long * 4) to ADDR 0
WARNING: In this case the entire block of 256 byte is written if we are working with FLASH (NGWARP).
12.6.2 IMS_READ

Reads from the internal memory at address ADDR a number of byte as in NBYTE and writes them in the array pointed by Punt.
Hardware All

Syntax

IMS_READ(char *Punt, long Addr, long Nbyte) as char
Parameters
Punt Pointer to data buffer where read data will be saved
Addr Start address in the reserved area of the device
Nbyte Number of bytes to be read

Return value:

Char 0 No error
<>0 Writing error
Example
Used variables:
Vett(10) long

Ims_Read(Vett(),0,40) ‘ read 40 bytes (10 Long) from Addr 0

12.7ETHERNET FUNCTIONS

Systems equipped with ETHERNET manage AUTOMATICALLY the STACK TCP/IP. To work with protocols at upper level than TCP/IP
it must be written some source code in the application. For example to process the MODBUS-TCP protocol there is a specific object
in library which uses the functions of this group. In the same way it's possible to create customized protocols.

=3 SET_IP

Sets the parameters of TCP/IP protocol.

Hardware NGWARP,NGMEVO

Syntax
SET_IP(ip as *char, sm as *char, gw as *char)

Parameters
ip IP address of the device

62

VTBII USER GUIDE

sm subnet mask
gw gateway
Example

Set_ip(“10.0.0.15”,”255.255.255.0”,0) 'IP=10.0.0.15
'SUBNET = 255.255.255.0
'GATEWAY = nothing

WARNING: This function must be called in the INIT section of the MAIN or PLC TASK.
12.7.1 PXETH_ADD_PROT

Adds a custom protocol to a specific port of TCP/IP. A custom function to process the new protocol must be written and its
pointer must be pass to this function.

Hardware NGWARP,NGMEVO
Syntax
PXETH_ADD_PROT(port as long, fun as delegate)
Parameters
port TCP port on which the new protocol is added
fun Pointer to the custom process function
Example
Used variables:
fun delegate

Init section of main:

Set_ip(“10,0,0,15”,0,0) 'setIP=10,0,0,15

fun=my_protocol

pxeth_add_prot(502,fun) 'Add the protocol my_protocol on port 502

'protocol process function
function my_protocol(len as long, buftx as *char) as long

endfunction

63

VTBII USER GUIDE

12.7.2 PROTOCOL PROCESS FUNCTION

This function isn't defined by system but it must be written in the application. The system will call this function, by the pointer
passed with pxeth_add_prot, each time a data packet is received from the port associated to this protocol. To read the received
data the function pxeth_rx have to be call while to send the response data they must be written in the transmit buffer (buftx) and
return from the function the number of bytes we want to send.

Hardware NGWARP,NGMEVO

Syntax
PROCESS_MY_PROTOCOL(len as long, buftx as *char) as long

Parameters
len Length of data packet received
buftx Pointer to the transmit buffer

Return value
long Number of bytes to be send

Example
Used variables:
bufrx(100) char

'protocol process function
function my_protocol(len as long, buftx as *char) as long
dim i as int

fori=0to i<len 'Read all received data
bufrx(i)=pxeth_rx()

next i

'Process the data

buftx(0)=12

buftx(1)=34

my_protocol=2 '2 will be sent as response

endfunction

12.7.3 PXETH_RX
Read a single byte from the TCP/IP receive buffer. It is called by the protocol process function to read the received data.
Hardware NGWARP,NGMEVO

Syntax
PXETH_RX() as char

Return value
Char Data read from the receive buffer

64

VTBII USER GUIDE

13 COMPONENT FOR FRAMEWORK

VTBIl compiler can create a DLL COMPONENT MODEL which can be imported in .NET (dot net) projects. That allows the full control
of hardware resource directly by a PC: READ/WRITE VARIABLES, CALL FUNCTION IN REMOTE PROCEDURE CALL.
For details refer to the NG Framework manual.

13.1 Enabling the creation of the COMPONENT NGFRAMEWORK

The generation for DLL for framework, is enable by VTBII Option
(See .NET FrameWork)

13.2 Exporting VARIABLES

We can export the desired variable to FRAMEWORK and then, on PC, write or read them as normal variables of the project.

| Var Intemal | Var Bits ‘ Define = Var Fixed

> ¥
Name Type Shared ExpocAye/ Description
VarExport1 LONG False Generic My Var Export

In the example the variables will be contained in Generic.VARIEXP and it can be read or written on the PC project as a common
variable.

We remember the time of execute the READ or WRITE operation depends by the enabled LINK: serial port RS232 or ETHERNET.
Obviously the second one will be more fast.

Only the INTERNAL VARIABLES can be exported, also if the it is refer to a structure.

13.3 Exporting FUNCTIONS

In a similar way as for variables it can be exported also functions.
That must be declared with a specific POSTFIX :

function FunctionName(...Parameters...) as Type $S_EXPORT_S CLASS
endfunction

S_EXPORT_S Keyword to enable function exporting
CLASSE Name of the exporting class where the function will be found

Example:
function MyFunction(Vall As Long,Val2 As Long) as Long $_EXPORT_$ FunzSistem

endfunction

65

http://www.promax.it/file_download/ENG/NgFramework_eng.pdf.

VTBII USER GUIDE

14 APPLICATION DEBUG

The DEBUG utility allows to control, both read and write, of all the application variables, to insert BREAK POINT and to execute the
code STEP by STEP. That makes more simple the development of the application. The application DEBUG can be execute by RS232
port as well as ETHERNET.

When the serial port is used, the PC must be connected to the first port of the target hardware (SER-1/ PROG).

WARNING: If application uses the first serial port, (ex. MODBUS, etc.) DEBUG will not work.

For Start Debug See Tools Bar

14.1 Button bar

Add a variable to the WATCH window.
It allow to insert a variable which will be update in REAL time and it will be also written.

Writing in the field Nome VARIABILE the alphabetical list of the variables of the project will appear making the searching very
simple. Variables can be added also in the following ways:

Drag&Drop. Select the desired variable in the code window and drag it in the WATCH window.

1f AsseX flagb=l && RsseX.move=0

LzzeX flaghgl

gosub RsseX CnEndMove
endif

Right button. Click with the right button on the selected variable and then Send to Debug.

66

VTBII USER GUIDE

if RAsseX flagb=1 && AsseX.move=0

hissex_riagole

gosub AszeX OnEndMowve

endif
Invia a Debug

WVai a Definizione

Pagina
It selects the page of the VARIABLE (if it is a local variable of a page), PAGINA 0 refer to the GLOBAL variables.

Contesto
If the watching VARIABLE is local of a FUNCTION (defined with dim) we can select the contest (function) of this variable.
These types of variables are visible only if a BREAK POINT in the relative contest is reached.

)

Remove the selected variable.
The selected variable will be removed from the WATCH window.

%

Remove all variables from the WATCH window.
Remove all Break-Points in the project.

o

Information about DEBUG.NET
With this button we can display some informations about DEBUG.NET and the target hardware. Also it is possible to update the
FIRMWARE of the target. (See section Firmware Update).

e ~N

Info su Debug.Nl:T

© Gestione Firmware ~

Piattaforma NGM13

TAU 5 [

Vers. Debug.Net 20052
Vers. Fmware | 1.03.16

Stop array reading.
When arrays of BIG DIMENSION are read can happen a TIME OUT of the system, with this button we can stop the read.

67

VTBII USER GUIDE

g-/f
Reset
It simulates a RESET of the HARDWARE.

WARNING: The application will be restarted.

Séve thé- list of variables on file
It is possible to create a file with the list of the variables in the WATCH windows to reload it afterword.

Load a variables list file

It allow to reload a list of variables previously saved.
The content of the variables WILL NOT BE INIZIALIZED.

Load a variables list file with value
It allow to reload a list of variables previously saved.
The content of the variables WILL BE INIZIALIZED with the saved value.

=

Load the last variables list
DEBUG.NET always saves the list when it is closed. With this button we can reload the last variables.

Display the LOG of HARDWARE ERRORS

All run-time errors are saved in this list. It is very useful particularly with CanOpen applications to test if in the CANBUS net there
are some errors or it works correctly.

68

VTBII USER GUIDE

Errors are sampled by directly by the target hardware in REAL TIME and they are showed in TEMPORAL order. It is also possible to
save the logging list in a file to analyze them afterword.

69

VTBII USER GUIDE

Scope
Enable the digital scope (see relative section)

-

DEBUG.NET options

It allows to set some DEBUG options.
Block Read Delay (Ms)
If this option is greater than ZERO a delay is added after the read of a block. If DEBUG uses the serial
port RS232 IT ISN'T NECESSARY.
It can be useful in ETHERNET because the high speed of the protocol could create some problem to
the VTB application (slowdowns).
We recommend to set the delay, when using ETHERNET to debug the application, with a value of at
least one Ms.

] VIS HEX

HEXADECIMAL/DECIMAL display
If activated the numeric value of the variables will be displayed in HEXADECIMAL format.

[] vIs Ascl

ASCII display
If activated, the ASCII character corresponding to the value of the variable will be displayed (it is useful for array of alphanumeric
STRINGS).

Pic TP 00520 % 06
pic Tm R = 926

It shows the elapsed time (in Milliseconds) of the TASK PLC and the relative percentage of CPU using. If the system read a value
near the CRITICAL one it will be signal by RED BLINKS af the value.

n

Run after BreakPoint (or F5 key)
When a Break-Point is reached, it allow to resume the normal running of the program.

E

Execute Intruction/Routine (or F10 key)
When a Break-Point is reached, with this button it is possible to execute a single line of source code.
Eventual functions will be execute completely without enter inside them.

Execute Intruction (or F11 key)
When a Break-Point is reached, with this button it is possible to execute a single line of source code.
If a function is encountered, program will stop inside it.

Find text
Find a text in the source code windows.

70

VTBII USER GUIDE
Task Plz

Display the content of TASK PLC
WARNING: in TASK PLC it isn't possible to set a Break-Point.

14.2 Writing of a variable

It is possible to change the value of all the variables in the WATCH list. Double click on the value and then write the desired value.

Mome Valore Pag. Contesto
PROMWA, |T4531?1 |D

If the variable is a type BIT the double click switches from TRUE to FALSE and vice versa.

14.3 Insert/Remove a Break-Point

The insert of a Break-Point allows to break the program in a specified point. When a Break-Point is reached it is possible to execute
STEP by STEP the program checking the correctness.

WARNING: Break-Points can not be inserted in the hardware NGM13.

By Select File select the desired page of code.
Click with the left button of the mouse on the left of the source code window.

inc prova

if on paint=2
_on paint=0

endif

retuorn

Click here

When the program passes from that line, the bar, from BROWN, will turn YELLOW and the execution will be BROKEN. At this point
it will be possible re-run the program with Run after BreakPoint (F5) or execute it Step by Step.

7 if on paint=2
(3;; §| _on_paint=ﬂ|
endif
return

To remove a Break-Point click again on the Break-Point

WARNING: When a Break-Point is reached and the program is stopped, the TASK PLC continues to run. Anyway breaking the
program in CRITICAL points we can create unsafe situation operating on machine. BE CAREFUL !

71

VTBII USER GUIDE

14.4 Firmware update
With DEBUG application it is possible to update the FIRMWARE of the hardware in use.

WARNING: FIRMWARE update can be executed only by serial port RS232.

With the INFO button this window is showed:

Info su Debug.NET i |

- Gestione Firmware ~

TAU | 2 [

Vers. Debug Net =~ 2.0.052

Vers. imware | 1.03.17

From Menu Gestione Firmware we can chose between two options:

Update from Server
In this case an INTERNET connection is necessary. The application checks if on SERVER PROMAX there is a newer version of the
FIRMWARE proposing the updating.

Update from file
It allows to update the hardware FIRMWARE with a file .SREC.
WARNING: Updating from file, no control of the firmware revision and compatibility with the hardware is made.

WARNING: During the phase of updating the application are stopped but it WILL NOT BE LOST.

72

VTBII USER GUIDE

14.5 Digital Scope

DEBUG.NET provides a SCOPE application to further support of debugging. DIGITAL SCOPE is able to monitor the variables in the
WATCH window.

The scope can display up to 3 CHANNEL.

| — oo +]

73

VTBII USER GUIDE

Source

Selects the variable to connect to a channel.
The variable must be in the WATCH window.

bles or disables the TRACK of a channel.

Sets an OFFSET on the TRACK.

Enabling LATCH, when the variable overcomes the Latch value, the TRACK will be FROZEN.

Set the BASE-TIME for all the tracks.

When scope is in OFF state, it aloows to scroll the track in the sampled memory.

<

Positioning the mouse on a point of the track, the value of the variable will be showed.

74

VTBII USER GUIDE

15 ETHERCAT CONFIGURATION

This chapter explains the steps to configure a network of EtherCAT devices.

To access to the EtherCAT configuration, select the inserted object for Etherca device, and open the section ETHERCAT->Settings:

BT % ccarpssavco \ >

Home Versore Deactaione Tipo E Al ||
o 104 ECAT DS42 £ GENERALS

Nome AXT

| i sErmmes.

Pressed the button, the following window will open:

| i VTBZ - |CAPromasty TEI Sesti Testami] — O K

g~) = =

To import one of the EtherCAT network configuration, you have to follow the following steps:
e Create the configuration of the network with an EtherCAT configuration software(We normally use Twincat)

e Import the created XML file with Import button

At this point, the window will look like, and display all data imported:

Users'huca_000\ Deshtop \ VTBIProjects| TestEthercar, Eth NGW -39 2xxami] -— a x

rouy DC Mode
Outpasx 1 Ao
TAL vkt pra) 2

Sewey N :

Now you can change certain data such as the names of variables, the DC sync mode, the shift time to the data of InitCmd the
Master. Make any changes you can save the configuration to be used in the project.

75

VTBII USER GUIDE

16 CANOpen NODE CONFIGURATION

This chapter not explain the CanOpen informations, so, SDO, PDO, TX,RX etc. is assuming that these are known

For configure a CanOpen node: CANOPEN->Settings:

Nare Vemon Decoptan Tie
Ciftosen 182 DSz

Following will be shown the window configuration:

CANopen configuration X
5 &
Nodes CFG time
~DS4021 (1) Repetions interval
PDOs
Type Way Cobld Comm Inhibit Time Event Time)
™ NotConfigured |[v|[] 181 [J Oo Oo
™2 NotConfigured |+ |[] 281 O Oo Oo
X3 NotConfigured | v |[] 381 Oo Oo Oo
X4 NotConfigured |+ |[] 481 0o Jo Oo
RX1 NotConfigured |+ |[] 201 O 0o Oo
RX2 NotConfigured |~ |[] 301 O 0o Oo v
= =
Name Object Index Subindex Dimension
Datas
TX RX
POOFAST [0 J[0 | Parameters
poostow [0][o] [+ |[-]
PDO SOFT III II] Object Index Subindex Dimension Value
TAU fms) 2]
BAUDRATE

0.316 of 2 (ms) - 15%
= |

16.1 Import an Existing Configuration

An existing configuration, contains all PDO configured.

Press button and choose the configuration file previous exported

16.2 Export the Current Configuration

When all PDO are configured, is possible export the configuration

Press button & and save the file

76

VTBII USER GUIDE

16.3 Cfg Time

In normal situations, when the machine starts, it's usual to have the master CNC that makes initialization functions in a very short
time, like the NGWARP for ex., while one or more slaves starts in a longer time, like drives.

Promax system makes the net configuration as the first initialization operation, then in this case could be possible that a device
will be not configured, cause it's not ready to accept master instructions. Therefore the device will not be able to exchange PDO
informations, like interpolated target quotas for ex.

How can we avoid this situation?

With the Configuration time-out. Using this strategy, when the master try to set the slave and the slave doesn't answer, it will try
once again after a little while, then can try again and again...

How many times the master must try to reach the slave and how many time have to wait from one and another try?

These are the data that are closed inside the round parenthesis: making a double-click, will open a form, where can be

selected in the right way.

16.3.1 Repetitions
Repeat Number, are the times that the master will try to reach the slave

16.3.2 Interval

Time for repeat, expressed in ms, is the time between two repetitions.

In the example showed, the master will try to reach the slave (node 3) 5 times, wait 1000ms (1sec) every time. It means that the
slave must have a start time, less then 5 sec.

16.4 PDOs

PDO TX and RX configuration for the node selected

16.4.1 Type
Type of PDO RX or TX

16.4.2 Way
Enable or Disable PDO
Mode
Manual
Fast
Slow
Soft
Not Configured
Disabled

16.4.3 COBID
PDO CoBId. Can be changed for include more PDOs

16.4.4 Inhibit Time
Not Used

16.4.5 Event Time
Not Used

16.4.6 Declaration VTBII variable for PDO
When the PDO Type is selected, can be the VTBII variable refer to PDO.

* | Add a new VTBII variable for the PDO

Name Variable name visible on VTBII code

Object INDEX and SUBINDEX of PDO.
All standard CanOpen types are already defined. The CUSTOM Type allows to set manually INDEX, SUBINDEX and
DIMENSION

77

VTBII USER GUIDE

Name Obyect index Subsndex Oamension
~oasPosition 6064 0] - Position actual value in user umsts | v | 6063 0 <

In this example, the variable AxisPosition contains the Node Axis value position

If AxisPosition >=10000 ‘Read Axis Position

16.5 Parameters
In this section, are defined all node parameters.
16.5.1 Add a Parameter
II Add a new Parameter

Select from list or CUSTOM for insert INDEX, SUB INDEX and DIMENSION
VALUE Defines the parameter value during StartUp

B =)
Object Index Subindex Dimension Value
[6040.0] - Controlword |v| 6040 0 2 3

In the above example the ControlWord will be set to value 3 when the node will be configured.

16.6 Datas

All Nodes configuration summary.
Is very important, check the Bandwith used compared to that available.

0316 of 2 (ms) - 15%

o | \

The Bandwith MUST NOT EXCEED over 90% of Bandwith available

78

VTBII USER GUIDE

17 IMPORT AN EDS FILE CANOpen

If the node is not present in the Objects list is possible to import an EDS file and create e new OBJECT.

| 1 z?fik/, & & | @

@ Fat32
-4 General
aw-J Iso_NS
@) Modbus
|£|‘Jj Motor Control
@2 Motor Control Plus
@) promax

qj Protocols

- Timers

O

1) Open the Objects TAB
2) Select the Project Folder
3) Import the EDS file from button “Import EDS”

Add item X

Object name
[NewOnjByEds |

e ek Object Name - Insert the new Object Name
Object . Object ID > Setto 1

C‘ Version - Insert the Version
ok || Cancel |

In the folder Project will be inserted the new Object. After that is possible import it like to others objects
The new Object is saved in the current project folder.

79

VTBII USER GUIDE

18 MAKING A CUSTOM VTBII OBJECT

VTBII allows to making a CUSTOM object for use in more projects.

¥ ¥ Far AL

1) Open the Objects TAB
2) Select the Project Folder
3) Press button “New Objeact”

Add item X
Object name
| TestNewObj]
} Object Name - Insert the new Object Name
Object ID Object ID > Setto 1

Version
[: Version - Insert the Version
Cancel

18.1 New Object Properties

The new Object must have some propertiesi:
Variables Used
VTBII Code

Events

Select the new Object and press button “Modify”

TR T

Following is possble to insert Properties, Code and events for the new Object

80

VTBII USER GUIDE

18.1.1 Properties and Events
In the table Properties and Events are defined all Properties and Events for the new Object

Propedies and events Vensbles Code

*n

g Section Narre Descrighon Defacit value Vinible Convertar

The Properties are the values that are inserted during the Application development (not in RunTime)
In the below example, BitOFF, BitON and Enable are Properties

el
Bl GENERALS
Desciaona
Nome Timer 1
£l SETTINGS
BtOFF 1000
BtON 1000

Enable 0
The Properties can be grouped in the Categories .
When the new Object is created, two default properties are already defined:
P1 and P100 where:
P1 > Object Name
P100 ~ Object Decription
Add a Property

Press Button “Add”
4
Id

Insert the Fields:

ID > Property Name available in VTBII Code. It returns the Value field
For use in VTBII code is necessary the prefix “?” and Postfix “?”
Ex: property name P2 in VTBII code is::
VarProp=?P2?

Section > Property Group. If is not insert the Group is selected to Default

Name > Property Name Visible in the browser

Description > Short description

Default Value > Return Value (normally it is a numerical value)

Visible > True Visible in the Browser
False Invisible in the Browser

Converter > None - In the Browser only the value can be inserted

Variable - Is showed the button for a VARIABLE SELECTION
Function - Is showed the button for a FUNCTION SELECTION

81

VTBII USER GUIDE

Delete a Property
Select the Property an press button “Remove”
@ &

Id

Add an Events

Press Button “Add” in the Event Table

@ &

Name

Delete an Events

Press Button “Remove” in the Event Table

-

Name

18.1.2 Variables
In the table Variables are defined all Variables used in the Object
The variables can be:

Globals - VTBII Variables
Bits - BIT Variables
Define - Define

Add a Global Variable

Select GLOBAL and insert the variable in the following format:
PP1?.VarName As Type

Where P1 is the Object Name Property

If is used “, the variable is shown in the Intellisense Help.

If is used “_", the variable is not shown in the Intellisense Help.

Properties and events Vaniables Code

@® Globals 1 ?P1?.Varl as long

2| ?P1?.Var2 as Int
O Bis 3 2P1? Var3 as char
O Defines :

The variables are available the SOURCE code of OBJECT with the defined name ?P1?.Varl, ?P1?.Var2 etc.
In the VTBII application the variables are available with ObjectName.Varl, ObjectName.Var2, ObjectName _Var3 etc.

WARNING
Is possible declare a variable without prefix ?P1?
THIS IS AN ERROR. NOT USE

82

VTBII USER GUIDE

Add a BIT Variable

Select BIT and insert the variable in the following format:
?P1?.NomeBIT As VAROBJ.BitNumber

Where P1 is the Object Name Property

If is used “, the variable is shown in the Intellisense Help.

If is used “_", the variable is not shown in the Intellisense Help.
VAROBIJ is a GLOABL variable.

BitNumber is the Gloab Variable bit number

Properties and events Vaniables Code

O Giobals 1| 2P12.Bit0 as 2P12.Varl.0

2| ?P12.Bitl as ?P12.Varl.l
@ Bis 3| ?P1?2.Bit2 as 2P12.Varl.2
O Def 4 ?2P1?2.Bit3 as ?P1?.Varl.3

The BIT variables are available the SOURCE code of OBJECT with the defined name ?P1?.Bit0, ?P1?.Bit1 etc.
In the VTBII application the BIT variables are available with ObjectName.Bit0, ObjectName.Bitl etc.

WARNING
Is possible declare a BIT variable without prefix ?P1?
THIS IS AN ERROR. NOT USE

Add a DEFINE

Select DEFINE and insert the variable in the following format:
?P1?.NomeDEFINE As Value

Where P1 is the Object Name Property

If is used “, the variable is shown in the Intellisense Help.

If is used “_", the variable is not shown in the Intellisense Help.
Value is the return value

Properties and events Varables Code

(O Globals 1 ?P12?.Definel as 80
2| ?P1?.Definel as 90
QO Bits

(® Defines

Le DEFINE sono disponibili nel codice OGGETTO con il nome definito (?P1?.Definel, ?P1?. Define2 ecc.)
Mentre sono visibili nel codice di VTB con NomeOggetto. Definel, NomeOggetto. Define2

The DEFINE are available the SOURCE code of OBJECT with the defined name ?P1?.Definel, ?P1?. Definel etc.
In the VTBII application the DEFINE are available with ObjectName.Definel, ObjectName.Define2 etc.

WARNING
Is possible declare a DEFINEe without prefix ?P1?
THIS IS AN ERROR. NOT USE

&3

VTBII USER GUIDE

18.1.3 Object Code
This section contains the Object VTBII code

The Code can be inserted in the following TASK:

TASK PLC - Init - Init Task PLC
Cycle - Cycle Task Plc

TASK TIME - Cycle - Cycle Task Time

TASK MAIN - Init - Init Task Main

Master Events - Events Task Main (Events Manager)
Cycle - Cycle Task Main
Functions - Global function Declaration

Add Code
Select the desire TASK
Remember the PREFIX and POSTFIX for variables

Propemes and everts Vanables (ode

Task Pc 1 1f 2P17.Varl=1i0
Y 2 2P12.Var2=0
C 3 endif
(O Cycle B
S Af ?P12.Bit0=1
Task Teme 6 ?P17.Var3=P1?.MyFunction{30)
7 endif
O Cyce “
Man
O
(O Master everts
®(Cycde]
O Functions
Function
Propattes and evarts Vanables Code
Task P 1 function 7P17.MyFunction(Vari as long) as long
O 2 if ?P17.Vari=0
= 3 P12.Vara=100
O Cyce 4 alsa
S 7P17,.Vari=i0
€ endif
T.d'(Tie 7 P17 .MyFunction=7P1%7.Var2*Varl
O Cyce 4 endfunction
Man
Orne
() Master everts
O Cyce

84

VTBII USER GUIDE

19 EXPORT NEW OBJECT IN THE CUSTOM LIBRARY

The Objects generated by EDS or from New Object, are inserted in the Current Project Folder.
Is possible to Export these Objects in the VTBII CUSTOM LIBRARY

This allows to use the new Objects in other projects.

1) Select the Object to Export in Custom Library
2) Press Button Export

Bl ¥ 4F AL

85

VTBII USER GUIDE

20 SNIPPET

The “Snippets” are the Code Fragments that can be used during the application development
This allows to CUSTOMIZE VTBII for a faster code writing.

20.1 New Snippet

From Menu Tools 2Snippet Management

Z) New) Save 3t Delete

CustomCANesor [
DocFunzione

Function

Header

¥ sise andf

Region

Select

Version

This List contains the Snippets already created (for modify, select the Sniipet and modify the Code)

New =~ New Snippet
Snippet data »
Marme
[MewSoppet]
Descaption Insert Snippet Name
[Test New Srioper]] Insert Snippet Decsription

[

After, insert the Code that will recalled when the Snippet will be activated

I) e

4 New 4 Save g Defete

(&

[Cormare 1 teseces This 18 8 Dev Snippec **eeee

| CuatomCAMecor 2 oode will De insert sutomatically *eeees
| DocFuracre 3 the Snippet will be activated *eveee
:«m 4 selecs Var

|1 shse et - ga ooy, 18

IR . endaelect

| Setect

Version

Save > Save the Snippet

Delete > Delete the selected Snippet

For recall the Snippet, during the code insertion, insert the Snippet Name.
The intellisense will show the Snippet Icon, and with Double Click on the Icon the Snippet will be inserted

Double Click

1 Tdtkkk* This is a new Snlwet 222233

2| "#4ktt* This code will be insert automatically #*tsi#*
3| '*4k4k** When the Snippet will be activated #***s**

4 | select Var

S case 10

6 endselectl

86

VTBII USER GUIDE

21 LADDER

VTBII allows to combine LADDER FUNCTIONS with BASIC MOTION

The Ladder language, uses a different logic respect to Basic Motion Language. The Ladder language is more simple to 1/0
managing.

VTBIl is not based its programming structure on Ladder language, therefore it is not developed as the PLC.

21.1 Add a Ladder Module

A Ladder Module can be added in Task Main_Cycle, Time_Cycle, Plc_Cycle.
Therefore, it is executed about Task priority.

Select the Task with Right Click:

=-4F 13sKS
E-45) TaskPlc
[2P int
| L.g7] TaskPlc_lnit

= New Module
' >. 4

Select New Module.
From Menu Project>New Module

New module X
Type Language
o Qe Select Ladder
(S Laxkiee Insert the Module Name
Name
Test Ladder |

Following, the empty Ladder Module will be shown

g e s [T

87

VTBII USER GUIDE

21.2 Ladder Functions

Following is explained the Ladder Functions in VTBII

21.2.1 Insert a New NetWork

ﬂ Insert a New NetWork in the Current Ladder Module

| | |
1 L

A minimum NetWork contains an Input and an Output (coil)

21.2.2 Remove a NetWork

ﬂ Remove a selected NetWork

21.2.3 Move a NetWork
lﬂ lﬂ' Iﬂ lﬂ Move Up-Down-Start-End the selected NetWork

21.2.4 Insert the NetWork Properties

ﬁ Insert the properties of selected NetWork (Label and Comment)

Netwuork properties X

Lavel
[Network1 |

This is the NetWork 1

Thes is the NetWork 1|

)

I

21.2.5 Insert a Jump in the NetWork

Insert a Jump.
The JUMP is an Output element and it is inserted to NetWork End

.) ..
11 i

For insert the Jump parameters, double Click on the Jump Label and after insert the NetWork Number for the Jump
When the condition is True, the process calls the NetWork number

. EEmre

88

VTBII USER GUIDE

21.2.6 Insert Element Properties

ﬂl Allows to insert the properties for the selected element
(see the single object)

21.2.7 Add a Contact in serires

alghis
" 4"" Add a contact AFTER-BEFORE of the element selected:

Properties:
Name - INPUT Name. This is a variable can be used also in the VTBII Basic Motion Code

The INPUT can be chosen from the VTBII variables with the Button ==
This allows to insert the Digital Inputs declared in the Project

Normal = Normale

Negate - Negate

21.2.8 Add a Contact in Parall

H {]H h Add a contact AFTER-BEFORE of the element selected:
Properties:
Name - INPUT Name. This is a variable can be used also in the VTBII Basic Motion Code

The INPUT can be chosen from the VTBII variables with the Button ==
This allows to insert the Digital Inputs declared in the Project

Normal - Normale

Negate - Negate

21.2.9 Add an Output (Coil)

0

Add an Output (Coil) to selected Network

The Output is added in parallel to Default Output

Proprieta:

Properties:

Name - INPUT Name. This is a variable can be used also in the VTBII Basic Motion Code

The INPUT can be chosen from the VTBII variables with the Button ==
This allows to insert the Digital Inputs declared in the Project

Normal - Normale

Negate - Negate

Set - Rising Edge

Reset > Falling Edge

21.2.10 Remove an Element
Select the element, and press key DEL from keyboard

21.3 Debug Ladder Application

For Debugging the Ladder, open the Ladder Module and press Button ﬁ
The contact, will shown OPEN or CLOSED with a different color

&9

VTBII USER GUIDE

21.4 Ladder NetWork Example

Variables declared on Basic Motion:

[Varirtemal] | VarBts | Defre | VorFued |

R
Name Type
Output INT

BIT declared on the variables:

Varltemal || VarBta | Define | Ver Fised

@ B Variable
[Variable Name
B @input
ol Input_Bit0
Il Input_Bit1
e Input_Bet2
e Ingt_Ei
8 ¢ Output
B0 Output_Bind
P Bitt Output_Bit?
HoBi2 Output_Bi2
OB Output_Bit3
Ladder NetWork

f Variables
Test NetWork 1

Input_Bit0 Input_Bitl Output_Bit0
| | | | QD
b 11 ‘

Test NetWork 2

Input_Bit2 Input_Bit3 Qutput_Bitl
| | | | :

Input_Bitd

/1

90

VTBII USER GUIDE

22 GENERAL SETTINGS

Allows to customize the IDE

22.1 Option

From Menu Tools—>Option

22.1.1 General Option
Language setting

22.1.2 Project
Project Options

Backup and automatic saves

[Save project before compilation
[Back up the project when saving
Perform muttiple backup

Compilation options
[Show extended info
[Use faster functions Ladder diagrams
Debug option
[Enable advanced debugging
] Enable debug on objects code

Save Project Before Compilation
Save the Project before the compilation

Back Up the project when saving
Create a project ZIP in the Folder Versions during the Saving
The ZIP file, can be recovery from the folder Versions, located in the current project folder

Perform Multiple Backup
Creates a project ZIP in the Folder Versions during the Saving with added a new Version to each ZIP
The ZIP file, can be recovery from the folder Versions, located in the current project folder

Show extended info
Show the compilation informations in the Output window

Use Faster functions Ladder diagrams
Uses the Fast functions for LADDER

Enabled advanced debugging
Set to enabled

Enabled debug on Objects code
Set to enabled

91

VTBII USER GUIDE

22.1.3 Paths
Defines the local paths for Snippets and Custom Objects
These paths are already inserted during the VTBII installation

Snippet path codes

[C:\Promax\Vib I | (==

Custom objects path
[C:\Promax |

22.1.4 Editors
VTBII Editors properties

VvTB

sms G| B

© vis B Varie

O ladder | CharNumForintelisense 1

/@ Font Courier New: 9,75pt

ShowIntellisense True
ShowLinesNumbers True
TimeForintellisense 300
UseAutoindentation True

CharNumfForintellisense
Number of characters before Intellisense activation

Font
Font type

Showintellisense
True Intellisense Enabled

ShowlLinesNumbers
True show lines number activated

TimeForintellisense
Time in Milliseconds before Intellisense activation

UseAutoidentation
Set to True

VTBII USER GUIDE

LADDER
Editors
e R | =
O vre B Varie
(® Ladder BorderObjectColor I Black
CommentColor B Green
DebugOnColor LawnGreen
DebugOutputOnColor I Red
|B Fort Courier New: 9pt
| GridCellSize 80: 50
GridColor [] Gainsboro
GridLines Both
HeaderColor [DarkGray
HeaderSelectedColor I Red
SelectedObjectColor []30.0:.0:0
BorderObjectColor

Objects Border Color

CommentColor
Comment Color

DebugOnColor
Object color during debug when the INPUT is ON

DebugOutputOnColor
Object color during debug when the OUTPUT is ON

GridCellSize
Dimensione Griglia Oggetti

GridColor
Grid Color

GridLines
Grid Line type

HeaderColor
Network header Color

HeaderSelectedColor
Selected Network header Color

SelectedObjectColor
Selected Object Color

93

VTBII USER GUIDE

Index
1 INTRODUGCTION ..tteiiieiiitttee e e e ettt et e e e s ettt e e e e s e aa bttt e eeesasanbeeeeeeeaesaaababteeeeaesaaass e e eaeeeesanasabaeaeeeesaaansbeaeeeeeesaanbbaaeeeesesaansnnaeaeens 3
2 NOTES ON PROGRAMMING LANGUAGEcoutiiiiiieiteeteeteetee sttt st e st ettt et at e s b e b e e bt e b e sanesaeesbeeseee bt enneeaeeesaesnaenseenneen 4
3 DEVELOPMENT ENVIRONMENT ...coutiittiitterttesttett et st sttt e et e sete st s bt shee bt et e e et eseeebe e b e e b e eaneeabesanesmeesmeesmee st enneeneeesnesnnenseenreen 5
3.1 Lo Yo E = - O PO PSPPSR TS PPTOPPPPPTOP 5
3.2 e o =Tot \Y =Yg T = (] OO TP OPPTRPPP 9
33 (0] oY [=Totf\Y/ - T o =T oSS 10
3.3.1 INSEIT A ODJECE .ttt ettt e et e st e et e skt e e bt e s bt e e bt e s b e e e bt e e b e e e bt e s bee e bee e baeenneeeane 10
4 VTBIE TASKS ..ottt ettt ettt e e e sttt et e e e s e ettt et e e e se s ua b e eeeeee e e anbaeeeeeeee s aababaeeeeee s assbaeaeeeesaasnbbeaeaeesanaansbaaeeeesanan 11
4.1 TASK PIC ettt ettt ettt s bbbttt e a e h et h e R e Rt e e Rt e e R s R e s Rt e Rt e bt e E e n et e Re e e b e e R e e R e e aneennesaeenns 12
4.1.1 TASK PLC_INIT «eteettetteettett ettt et st s e st et e bttt e bt e s b e b e b e e st e ea b e s st e sbeesbeenbeenb e embeeaeeeseesbeebeenbeembeemsesmtesheesbeenseenseennenns 12
4.1.2 TASK PLC_CYCIE .ttt st et e e e e aa e s ae e bbbt s a e s b sanesaeesaeeneeaneens 12
4.1.3 NOtE ON CONCUITENT PrOSIAaMIMUNEG ..uvuvuvuiiieierereieturetererererererererererererererere.——————————————————————.—...........—————.—.—.........—.—.—.—.. 12
4.2 TASK TIMI ettt ettt h e h ekt e e e et e s bt e s bt e sb e e sb e e ab e eat e e he e eb e e bt e b e e et e e et e s et e s Re e s R e e bt e bt e a bt ea bt eheeeh e e b e e b e eabeeanesaeenae 13
4.2.1 TASK TIME_CYCIE ..ttt sttt a e a e e e s aa e s a e e s b e bt e b e s ae s s e sanesaeesaeeneeane e 13
4.3 TASK IVIAIN 1. sttt a e st s h e a e et e a e e e e s a e r e e r e e ne s s e 13
43.1 TASK IMIAIN _INTT ettt sttt ettt et et b e bt e e e s et e s st e s bt e sbeesb e e bt emt e easeeseesbeebeenbeeabeeabesmtesaeesaeenseenseensens 13
4.3.2 TASK IMIAIN _CYCIE ..ttt st s s st s a e a e e e e aa e aa e s ae e s b e bt e n e s ae s nesanesaeesaeeneeane e 13
4.4 LU g o o PP 13
44.1 1Y =11 o T 0T o T o o PN 13
4.4.2 Main_FUNCLIONS_ODJECESEVENTSeiiiiiiiiie ettt ettt e eete e e e et e e e et e e e esataeeeeasaaeeesbeeeeastaeseensaaeessraaaans 13
5 HARDWARE CONFIGURATIONoiiiiiiiieiieitete ettt ettt et s st st sreeae s st sae e s ae e bt et s s e saeesaeesaeesbeesn e ennsenaesreesbe e neeneennesanesae 14
5.1 NGQ/NGQX CONTIGUIATION ..eeetiiieiieetiieetee ettt eette ettt eseeeeteeesteeeeteeestaeeetseesabeeesseessbeeasseesssaesssesssaesasessaseesasessssesnsessseesnrenan 14
5.2 NGIMIEVO CONFIBUIATION ... utiiiieiiie i ettt eecte e ettt e e ettt e e e sttt e e e eteeeeebaeeeeaataeeeassaseessssaaeastaseeassaesassasaeanssaeeanssaessansaeseansseeeannes 15
53 NGWARP CONFIGUIALION ...uiiiiiiiii e it ettt ee sttt e ettt e e et e e e sttt e e e s et e e easaeeeessseeeesssaeeeassaeeasseeeesnsseeeansseeesanseeessnsseeennnes 16
6 FaY oY o] [Tor- oo W @oTa Y TV - 4 o] o FO SRR Errore. Il segnalibro non é definito.
6.1 B < LI TPUPUPPPPPPRE 17
6.2 [CT=T =T - PP T TP US PP O PTOPTOT 17
6.2.1 R Y00 111 =SSR 17
6.2.2 TASK TIMIE ettt ettt ettt et e he e e bt e e bt ekt et e ea b e s atesheesbeesbe e bt eab e eab e eb b e eb e e b e enbeeabeeabeeabesheesheenbe e bt enreens 17
6.3 L0 7o L T= Yo IESY =1 =3 SSPRN 17
6.3.1 Y= AT | TP T ST PSP P PRRTR RPN 17
6.3.2 EENEINEE .. ettt sttt bt e bt s bt e bt e s bt e be e s b e e e be e s be e e bee s beeenneeeane 17
6.4 (DL oYU T Y=Y u T =& PR UUPRN 18
6.4.1 Y= AT | P TOT U SPSP PSP 18
6.4.2 EENEINEE ..t sttt s bbb e bt e s b et e bt e s b et e bt e s be e e bee s beeeneeeane 18
6.5 [fe]gY o [=To A TeT o BT =] d 14 =4 PPNt 18
6.5.1 SEIIAL ettt h ettt st st sR e R e e et e an e ae e R et r e e R e r e e nesanesaeenae 18
6.5.2 Lo 0 T=T 0 = TSP PP PPRPRT 18

VTBII USER GUIDE

6.6 INET FrAmMEWOTK ...eeneieiieeie ettt ettt ettt b et e s bt e e b et e sh e e e bt e e sab e e sab e e sabeeeab e e sabeesabeesabeesabeesabeeeabeesabeeenneens 18
6.6.1 DO NOT CrEAte FramMEWOIKS ...c.eeiiiiiiiieiite ettt ettt ettt et e st e e bt e s bt e e bt e s b e e e bt e sbeeebeesbeeenneesane 18

6.6.2 WINAOWS XP @Nd HIZNEE .ottt ettt et e et e e e st e e e e at e e e s asaeeesataeeeestaeesansaaeesnssesesssaeeeannnens 18

6.6.3 WWINAOWS CE ...ttt st et et et et h e b et e e s ab e s e e s oe e sheesbe e et eat e enteeb e e eb e e b e e beennesanesanenre 18

7 TYPE OF VARIABLESceeeeeeiieet ettt ettt et ettt et e e ettt e e e e e s aa b e et e e e e e e s e abe e e e eeeeesaaaaabbeaeaee s e asbbeaeeeeeesaanbbbaeeeeeesaanssnaaaeens 19
7.1 AV LT VT4 g 1= o ol TP P PP U PSP PPOP 19
7.2 INEEINAI VAITADIES ...t st st s bt et e bt et e st s bt e b e e bt e bt e resanesaeesaeesreenreeneenneene 20
7.3 BIT VArIabIes ...ttt ettt e h et h et e s bt e e b et e s h b e e bt e e sh b e e bt e e s bt e e e he e e sh b e e ea bt e sab e e e abeesbeeeabeesbeeenree s 21
7.4 DTN ettt h et bt e bt b et e eh et e b et e eh et e bt e e ehE e e Rt e e ehe e e ab e e s bt e ea b e e sabeeeabeesbeeeabeesbeeearee s 22
7.5 N Lo B TS 1 o] L= PP TP PP PRRPRRPRRTOOt 23
7.6 0T 01T PP 24
7.7 F N - |V PP PRTPUPTPN 26
7.8 YA (=Y Y= L =1 o[PS 27
7.9 SEALIC VATTADIES ...ttt e s bt et et e a e eh e b e e b e e bt ettt she e she e e bt et e eabeeaeeebeenneerean 28
7.10 (DL =Y SRR 29
728 5 Y o (U o U = OO PP P 30

8 OPERATORS. ...ttt sttt ettt ettt s b ekt e bt ea b e sat e s bt e sheesbe e bt e ae e eae e e bt e b e et e ea b e eabesabesheenb e e nb e em bt e ae e eheeeb e e be e b e eabeeabesmtesaeesbeenbeebeenteans 32
8.1 Logic and MathematiCal OPEIratorsccuiiiieeiieeiciiee ettt ettt e ettt e e st e e sttt e e e s taeesesteeesanseeeesntseeessseessanseeessnsseesannes 32
8.2 o) Z=R o T I o o] {11 o] o |- PSP PP PTPPPPPN 33

9 IMATH FUNGCTIONS ...ttt ettt ettt et sttt b et e e st s hte s bt e s bt e bt eat e e st e ebe e b e e b e ea b e e abeeaeesaeesheenbeemb e eab e esbeebee b eenbeennesnnesaeenue 34
9.1 SIN et e E Rt s et st s R sR e et e ae e Rt e R e e R e Rt e Rt Rt s n e sae e sat e s Rt et ear e an e e e e nneenrees 34
9.2 COS ettt et h Rttt st s e e s R Rt e et et e R et e R e e R e Rt e Rt e n e s a e sae e sat e s Rt e n e an e eaneeanenneenrees 34
9.3 SQR ettt ettt h e b e bttt a e e bt e bt ekt e a bt ea b e ehteSh e e AheeaRe oAbt e A bt ekt e ek e ek e ea b e e A bt ea bt eabeeheenhe e bt e bt eabeeabeeabenbeebean 34
9.4 TAN Lttt s st h e Rt e a e et e R et e R e Rt e R e Rt e n e s e s Rt SRt e Rt e et e et ean e e ae e e R e e r e e r e e neenesanenae 35
9.5 ATAN Lttt s h e Rt a e et R e R e R e R e Rt e n e s a e s Re e s Rt e s Rt e et e n e an e eae e e R e e r e e Rt e neesnesaeenae 35
9.6 ASIN Lttt ettt b ettt a e bt b e ettt e ea b e sh e e eh e e eh e e b e et e SRt e ehe e ekt e b e e ke ea bt e e b e ehteSReeSReeeh e e bt eaE e ea bt eheeehe e be e be e beenbeeneenaee 35
9.7 AACOS ..ttt b ettt a e bt bt e bt et e ea b e eh e e eh e e eh e e b e e a bt e at e eh et ek e e bt e ke ea ke ea bt eateShee SR e e ehe e bt eat e ea bt eheeehe e be e be e beenresneenaee 35
9.8 ATANZ Lttt ettt r ettt s h e a e et e e et e R e R e R Rt et s a e st she e s Rt e et e et eaa e ae e e n e e bt e r e e neeanesanenae 36

O A B S ettt h bbbt ea b e eh e e eh e e ahe e bt e bt ea et eh et eh e ek e ea ke ea bt ea b e eReeSh e e eh e oAb e e A bt eaEeeh b e eh e e b e e b e e bt eabeeaeesheenbee bt enbeeas 36
9.9 FABS ..ttt ettt ettt ettt h e bt h e et a et ehe e eh e ekt ekt ekt ea bt e R bt SRt She e Ah e e b e e R et eaE e eh et eh e e eb e e bt e b e e beeabeeheesheesheenbeenbeenteaa 37
10 INSTRUCTIONS TO CONTROL THE PROGRAM FLOWoiiiiiiiiiniiiriereete st st sieesnt ettt e s e ne e nesnesaeesieesmeesneenneenneens 38
10.1 TF-ELSE-ENDIF ...ttt ettt ettt sttt st s et e et et e st e et e b e e b e e b e e r e e st e aneseeesaeesae e st e neenneenneeneenneenneenrees 38
10.2 LABE L .ttt ettt ettt ettt ettt ettt h e bbbttt ea b e ea e e eh e She e ehe e bt e a bt ea et eh e e eh e e b e e a ke ea ke eateeabeeheeeheeehe e bt e bt eabeeateehaeehbenbeebean 38
10.3 GOSUB-RETURN ...ttt ettt ettt ettt r ettt seeeseee s et e et e et e ae e st e s b e e s b e e s e e re e nesanesaeesreenneenneennesnneeneenneenreen 39
10.4 (G101 1 TP U PP PROPTORO 39
10.5 IN G ettt ettt ettt et e h e eh e b e e bt a bt eateeh e e eh e e eh e e be e bt eateea et ehteeh e e bt ea bt ea ke eabeeabeeh et eheeeheeebe e bt eabeeateehteehaenbeebean 40
10.6 DEC ettt ettt ettt h e bt bt bttt ea bt eate bt e bt e ehe e bt eateea et ehteeh e e bt ea ke ea bt eateeabeeateSheesheeebe e bt eabeeabeehaeehaenbeebean 40
10.7 SELECT-CASE-ENDSELECT ..ottt sttt st s ettt ettt et s s e s s heenmeesn e e et enaeemeesr e e ne e neennesanesmnesae 40
10.8 FOR-NEXT-STEP-EXITFORutittetteieetteetteste et e bt eat e sttt saeesteesbe e et eat e eheeebe e bt e b e eabeeabesabesabesaeesae e bt ebeeabeeabeebeesbeenbaenbenn 11
10.9 WHILE-LOOP-EXITWHILE ...ttt ettt ettt sttt sttt ettt et ebe bt e bt et e st e sabesheesbeenbe e bt eabeeabeebbesbeenbeenbeenbeeabesanenae 42

VTBII USER GUIDE

L1 FUNGCTIONS. . ettt ettt e ettt e e e e e e bttt e e e e s e s aaba bt e eeeeesaaabe e e e e e e e e s s sa et aeeeeeseaasbbeeeeeesesanbaeeeeeesesanbsnaeeeesesaannnnaeaeens 43
11.1 Declaration Of @ fUNCHIONcooiii ettt et e st e e bt e sttt s bt e s be e e bt e s be e e bt e s beeeneesbeeenneeeane 43
11.2 Internal FUNCEION VArT@bIEscouiiiiiieiieeee ettt ettt st e s b e b e bt e b s nesaeesaeesreesreenneenneens 44

12 SYSTEIM FUNGCTIONS ...ttt sete st st st ettt st s bt s b e b e b e e s e s eeesaee s bt e s bt e nb e e et eas e eme e e beeeb e e b e e b e e seeanesmnesbeesmeenseennesnnens 45
12.1 FUNCTIONS FOR THE SERIAL PORT CONTROL ...ceiiiiiiiiiietee ettt e ettt e e ettt e e e s ettt e e e e e e ssbbaaeeeeeesennnnneeeens 45

12,11 SER_SETBAUD ...ttt ettt sttt ettt se e st st e bt et et e st e bt e s b e e b e e st e s st s aeesaeeshe e s bt e st eas e eaeeeb e e b e e b e enresanesanenae 45
12.1.2 SER_IMIODE ...ttt ettt ettt ettt st st s bt e s bt e bt et e a et e b e e bt e R e e bt e bt e e e sh et nRe e Rt e bt e et ae e e b e e b e e R e e reenesanenee 45
12.1.3 SER_GETCHAR ...ttt ettt e e e ettt et e e e s ettt et e e e e e s aabe et eeeeee s s ababaeeeeeesa anbbtaeeeesesassbeaeaeeeesanssnaeaeens 45
12.1.4 SER _PUTECHAR ..ttt ettt e e e s ettt et e e e e e a b et e e e e e e e s s ababbeeeeeesaaanbbtaeeeesesaasbbeaeaeeeesanssnaaaeens 46
0 T = 2 S o U PP TP PSSP PP 46
12,16 SER_PRINTL .ottt sttt et e b e e bt b e s e e s e e sae e s bt et e e an s e anesaeesn e e b e eanesanesanesaie 46
12,07 SER_PRINTF .ttt sttt e e a e h e b b e e b e s e s e e sae e s bt e a s e aa s e aaesa e e s b e e b e enesnesane e 47
12.1.8 SER_PUTBLEK ...ttt ettt ettt ettt st s e s bt e sb e bt et e st e ebe e e b e e b e e s b e eabeeaeesaeesheenb e e bt eab e esbesbeenbeenbeenbesnsesaeenae 47
L2.1.9 SER L PUT ST ettt sttt ettt ettt h e bt ekt e e s aae s bt e s bt e s bt e bt e at e e a et ebe e e b e e b e ea b e eabeeabesae e sheenb e e bt e et e e a b e eb e e b e e b e e b e enresaeenae 47
12.2 MISCELLANEOUS API FUNCTIONS ...ttt sttt et s a e s st st sa e a e e n s ean e enaesaeenneene s 48
12.2.1 GET_TIMER ettt ettt ettt ettt ettt s bt s bt e st et e e at e e at e ebe e e b e e b e e a b e e abesatesaeesheenb e et e eab e eateeb e e b eenbeenbesanesaeenne 48
12.2.2 TEST_TIMER ettt sttt ettt et sttt ettt st s bt s bt e s bt e bt e at e e a e e s he e e b e e b e ea b e e abesabesaeesheenbeemb e eab e esbesbee b eenbeenbesnnesaeenue 48
12.2.3 ALLOC ...ttt e e e h e h e h e h et a e s st nhe e a e a e aa e aa e s a e h e bt e n e s nesane e 48
12,24 FREE e e e b e e e a e a e et e a e e s r e b e e s ne s e 49
12.2.5 SYSTEM _RESET ..ttt ittt ettt sttt ettt ettt s bt e s b e s bt e bt et e e a et e be e s b e e b e ea bt e ot e saeesaeesheenb e et e eab e eabeebeenb e e beenbeeanesaeesae 49
12.3 APl FUNCTIONS FOR MANAGING OF STRINGSotiiiiieniieiteiteiieeeereere ettt et n e n e sne s e 50
D2.3. 1 STRECPY ettt ettt st st bt et et e h e Rt Rttt sae e s ae e nR e Rt e et e aa e e r e e R e bt e ne s ne e e 50
12.3.2 STRLEN ettt ettt ettt b et et e et s ate s bt e s bt et e e ae e e at e e bt e b e ek e ea b e ea ke eaee SR e e ehe e bt et e e at e ea b e eheenbe e be e beearesaee sae 50
12.3.3 STRCIMP .ttt ettt st st s bt e a e et e ae e h e e R e e Rt e bt et s et et sae e Rt e n e an e an e e r e b e bt e ne s ne e nae 50
12.314 STRCAT ettt ettt ettt s st st s bt e bt e et e et e e h e e e Rt e Rt et e an e s ae e s ae e nR e Rt e aa e an e an e e r e R e e bt e ne e ne e e 51
12.3.5 STR_PRINTL ettt ettt ettt ettt e bt et et ea e s bt e s bt e sb e e bt eab e e aeeebe e beeabeeabeeabeeaeesaeesheenbeembeeabeeabeebaenbeenbeenbesabesaeenue 51
12.3.8 STR_PRINTF ..ttt ettt ettt ettt ettt e bt sat e s bt e s bt e sb e e bt eab e e ateehe e e b e e b e eabeeabeeaeesaeeshee bt embeeat e enbeebeenbeenbeeabesabesaeesue 51
12.4 FUNCTIONS FOR AXES INTERPOLATION ...ccuttiiiiiiiteite ettt ettt ettt st st e snteae e snnesmnesneennees 52
12,41 PROPERTY Lottt ettt ettt ettt b e bttt sat e s ate s heesb e et e e ab e e a e e e bt e beea b e ea b e e abeeabesaeesheenbeembeeat e eabeeb e e b e e beeabesabesaeesue 52
12.4.2 IMMOVETO ..ttt sttt ettt et ettt e bt ekt e e e satesate s bt e sbe e bt e at e eae e ebe e b e e b e ea bt eabeeabesae e sheenb e e bt eab e eabeebeenbeenbeeabeeabesaeenae 52
12.4.3 LINETO coieieieeieeieet sttt ettt ettt et st s st e s bt e et et e et e h e e R e e Rt e r e e an e s e e e s Re e e Rt e Rt et et et e r e e R e e r e e re s resane nee 54
T12.4.4 ARCTO .ttt ettt et et sttt et et et st s et s ot e s r e e et e et Rt e R et R e e Rt et aR e sae e sRe e e Rt e Rt e n e ae e e ae e r e e R e e r e e reeneneeenae 55
L2045 SETCIMD ..ttt ettt ettt ettt h e bt ekt e e eat e s ate s heesbe e bt e at e e at e eh e e b e e bt ea bt eabeeae e ehe e Sheeebe e bt ea bt eateeh e e be e be e beeabesaeenas 56
12.4.86 SETPIANDoiiiieieeteeee ettt ettt sttt ettt st st st e s bt e et et e s et e m et R e e b e e Rt e an e sae e s ae e sRe e e Rt e Rt e aa e e ae e e n e e R e e r e e resne s nne 56
.1 STOP ettt ettt ettt r ettt st e R e Rt Rt et e Re e R R e R e Rt Rt e e s Re e s Rt e e Rt e Rt e et e e a e eRe e e R e e R e e r e e neenesanenas 56
12.4.7 Y O T PP PP PPPPPPPPPRRPPRt 57
L2048 IMIOVE ...ttt ettt ettt ettt b ekt e b et e s ateshe e e bt e bt e a bt e a b e ekt e bt e b e e a b e oAb e ea e e eheeehe e bt e bt eateeateehteebe e be e beeabesaeesae 57
D2.4.9 PRESET ettt ettt et sttt et st st s h e Rt et R e R e e Rt e Rt et ae e s e et sRe e e Rt e Rt et e ae e ae e e r e e R e e r e e re s nesanenee 57
125 CANOPEN FUNCTIONS ..ttt sttt ettt ettt ste e bt e e satesateshee s bt esbe e bt eateeueeebee b e enbeeabeeabesabesaeesaeenaeenbeenbeeabesasenbeenbenn 58
12.5.1 PXCO_SDODL ..eutiiiiiteitteiteete ettt ettt ettt et s a e s htesheesbe e s bt e ab e eateehe e e bt e ke eabeeabeea bt ehe e eheeebe e bt eabeeabeehe e be e be e beeatesaeesae 58

VTBII USER GUIDE

12.5.2 PXCO _SDOUL ..ttteee ettt ettt ettt e e e e e s ettt e e e e e s e aba et e e e e e e saaasbeeeeeee s e s s beeteaeeeesanbnbaeeeeeesaasnrbeaeeeesanannreee 59
12.5.3 READ _SDOAC ...ttt ettt ettt et e ettt e e e e e s abe bt e e e e e e s e aba bt e e e e e e seaaaab et e eeeese s s bbateaeeee s e nbneaeeeeeesaabnrbeaeeeesaannraes 59

W2 PXCO_SEND ...eitiiteittesieest ettt ettt sttt e bt ettt st st eshee s bt e s bt e bt e s et e st e e he e e b e e e b e e b e e Rt e et e e ase s ae e sheenhe e bt e bt e et eaneennenre e reereen 60
R S) (6 I 1Y PP U PSR PRPRPP 60
12.5.5 READ _EIMICY ...ttt ettt ettt et ettt et e e e sttt e e e e e s e aba et e e e e e e s e ass b et aeeeese s s be et e eeeeesanbabaeeeeeesaansnbbeaeeeesannnrees 61

12.6 DATA SAVING FUNCTIONS ...eeetieit ettt ettt st st sttt e et ettt s st e e b e e b e e b e earesan e sanesseesaeeseee st e st enseeneeeseenbaenbnenrens 61
12.6. 1 IIMIS_WRITE ..ttt ettt sttt ettt st s e s bt s bt e bt et e st s b e b e e b e e b e e as e saeesaeesheenb e et e eae e emeeeb e e b e e b e ennesanesanennee 61
12.6.2 IIMIS READ ..ttt ettt ettt et e e ettt e e e e e s ba et e e e e e e s e aaba et e e e e e e seaaab et aeeee s e s bbeteeeeeesanbnbaeeeeeeeeabnrbeaeeeesaannrees 62

12.7 ETHERNET FUNGCTIONS. ...ttt ettt ettt ettt et e e e e ettt et e e e s e aaa b e teeeeeee s anbbe et eeesesaanbabteeeeeesanbabaeeeeeesannsnnneaeens 62
W3 K] = 1 TP PSP PRR PPN 62
12.7. 1 PXETH_ADD_PROT ..ottt ettt ettt ettt st sttt e st s h e b s saee st sae e s bt e a e e aa s e aaesreesb e e b e enesnesanesae 63
12.7.2 PROTOCOL PROCESS FUNCTIONciiiiiiiiiiiiieieiie ettt ettt et st st s re e e s s sn e b e enesnesane e 64
12.7.3 PXETH_RX ettt sttt ettt ettt h ettt et st s bt s bt e s bt e bt e at e e ae e eh e e b e e b e ea b e e abesaeesheesheenb e et e eab e eaeeebeenbeenbeenbesnnesanenae 64

13 COMPONENT FOR FRAMEWORK......cecttrteriteritenieenttestt et ettt et st et e bt eabesabesaee s bt e sbee bt e et eat e emeeebeesbeenbeeabe e beeabesatesbeesbeenbeenbeensens 65
131 Enabling the creation of the COMPONENT NGFRAMEWORKccccociiiiiiiiiieticriere et 65
13.2 EXPOITING VARIABLES. ...ttt ettt ettt ettt h e st e bt et e st e e he e e bt e b e b e ea b e e st e eabesaeesheesaee bt e bt easeenbesssenbeenbeenbenn 65
13.3 EXPOIING FUNCTIONS ...ttt ettt sttt ettt st sb e sh e s bt e st e bt et eae e e bt e e b e e b e et e e s b e e et e eabesseesheesbee bt e bt enbeeatesnsenbnenbnenbenn 65
14 APPLICATION DEBUGottt sttt ettt a e s st s a e b e e b e a s e aa e e aa e s ae e s b e e bt e nesanesanesaeesaeesaeenneeaneens 66
141 BUEBEON DA -ttt st st a e e e e eenr e 66
14.2 R u T Y= ae) B Yz [T o] LTSS 71
14.3 INSEIT/REMOVE @ BIrEaK-POINT .. .vviiiieiie ittt ettt ettt e et e ettt eseaaeesstatesssabeeeseaseesssaeesssssatesasseessarseessssasessnsnes 71
14.4 (R L g\ =IO oo - SRR 72
14.5 (D=4 7 | Yoo o 1T SRS 73
15 ETHERCAT CONFIGURATIONooittiititiiteite st st stt ettt ettt ettt st s saee st satesn e e et eae s e aa e eme e s b e e s b e e neenesanesanesaeesneesaeeneenneens 75
I 07T a 0T o T=T I\ [T [l @] o F=d U T = 4o o [RSRP 76
16.1 IMport an EXiStiNg CONFIUIAtIONiiiiiiiie et e tee e e st e e e e te e e e eaaaae e s bbeeeeaataeeeeasaeeeesbeeeenntaeeennsanas 76
16.2 EXport the CUrrent CONfIGUIATIONcoiiiie ettt etee e e et e e e et e e e e eaa e e e s bbeeeeaataeesensaeeeesbeeeenntaeesnnsaeas 76
16.3 L0110 T3 TIPS T PP PO PTOPTOPTPRP 77
16.3.1 [0=T o1 AL [0] F 3PN 77
16.3.2 TEEIVAL .ttt ettt st s bt s bt e bttt ea bt e he e b e e b e e b e e b e e abesabesheesheesheenhe e bt eateeateeheenbeebeenbean 77

16.4 PDIOS ..ttt st s Rt Rt Rt e e R et R et R e e R e e Rt e Rt e Rt s et s ee e sRe e sR e e Rt e n e an e e et n e e nnnenneenrees 77
16.4.1 L < LI PP PP P PTPPPPPPPPPPPPPIRY 77
16.4.2 VY e e e e e e e e 77
16.4.3 COBID ..ottt sttt ettt st st st E Rt et R e R e Rt e Rttt se et s R e s Rt e Rt e et e ae e ae e e r e e R e e r e e re s nesanenee 77
B3R S 1Y o 11 o1 A T T TP U PP 77
16.4.5 Y= o1 T =TT PP RPN 77
16.4.6 Declaration VTBII Variable fOr PDOcc.eoiieiiieieiieiie ittt ettt ettt ettt b ettt bt e sbeenbe et e eabesaaesbeenbeenbean 77

16.5 L= L= 0 0T=1 =T 78
16.5.1 Fie [o I I T T 4 1= 1= TSP PP PP U PP ORI 78

16.6 [0 | = LT 78

VTBII USER GUIDE

17 IMPORT AN EDS FILE CaANOP@N....ueitiiieeieeitttet et ettt et e e e sttt e e e e e s ub ettt e e e e e s a e bt eeeeeesaaasbbeeeeeesesaanbbeteeeesesansbbaeeeesesaansnnneaeens 79
18 MAKING A CUSTOM VTBI OBJECT ..eiiiiiiiiitetet ettt ettt e e e e e ettt e e e e e s e e et e e e e e e s e aasbbeeeeeesesanbaeeeeeeeesanbbbeeeeesesaansnnneaeens 80
18.1 NSV @] oY [=Tot fl 2 o o T=T =R 80
18.1.1 [T o T RT3 [Lo I V7= oY SR 81
18.1.2 VAETADIES .ttt sttt e bt e bt e bt bt e bt e s b e e e bt e s bt e e bt e s beeeabeesbeeenee s 82
18.1.3 (0] o =Tt f ©o o LT USSR 84

19 EXPORT NEW OBJECT IN THE CUSTOM LIBRARYeeiuiiiieitiertenieetteteere st sieesieesree st e et et eaaesseesbeesbeeneesnesmnesanesmeesneenseenseennenns 85
PO T V11 o = OO TP P PPPU U OPPUPPPPTRRRRPIRt 86
20.1 LRV a1 =3 OO PO P PTOTRPP 86
201 LADDERttt ettt a st b e R e e R e e R e e Rt e Rt e R et eh et e R e e R e e R e e Rt e Rt e Rt s et she e sh e e Rt e Rt e et e areennesrnenreerean 87
21.1 Add @ Ladder MOGUIE......co.iiiiiiiiiieece e s st st st e a e s sa e et s e 87
21.2 LaAEE FUNCEIONS ..ottt h e e b b s ae st s et e bt e b e e an s eaneeraesneesneerees 88
21.2.1 INSEIT @ NEW NEEWOIK ..cniiiiiiii ettt ettt st st sbe e sbeenbe e bt et e eabeeseesbeenbeenbean 88
21.2.2 REMIOVE @ NETWOTK ...ttt st sb e st ettt e at e e ae e e bt e bt et e et e e st e e abesaeesheesbeenbe e bt emteentesenenbeenbeensenn 88
21.2.3 MOVE @ NEEWOTK...cniieiieeee ettt b et r e sne s st e sreereereens 88
21.2.4 INSErt the NETWOIK PrOPEITIES ...cceiiiiiieiiee e ciiee ettt e et e e e sttt e e e et e e e e stbeeeeeatbeeeeataeeeeasaaaesnsseseanstaeseansaaeesnsseeaans 88
21.2.5 INSErt @ JUMP iNthe NETWOTKooiiieieeee e e e et e e e et e e e e ata e e e eaaaeeeebbee e e staeeesnbaaeessreeaans 88
21.2.6 LTy o 1= V=T o o o T o 1= o [PPSR 89
21.2.7 Add @ CONTACE N SEIIES ..ottt s st st sa et s ae e s b e s b e e b e b e s nesanesaeesaeesaeeneenneens 89
21.2.8 Add @ CoNLACE TN PArall.....cocuiiiieieeieeiee ettt bttt ettt st b e b b et e e st e sreenreenreenreeas 89
21.2.9 Yo [I T T O 1014 o TV (0 1) ISR 89
21.2.10 REMOVE @N EIBMENT....eiiiiiiiiiieee e s st st st a e n e e et e e esanesbeennees 89

21.3 (DL o T W To [o 1T Y o] o] {or: 1 4 e o H OSSR 89
21.4 Ladder NEtWOIK EXAMPIEciiieiiieciieeceies st e sttt e e sttt e e et e s eaaee e e st e e e e ateeesaaeaeesssaeeeesseeesansaeeesnsseeeennseeeennsnns 90
22 GENERAL SETTINGS ...ttt ettt ettt ettt st s st st sa ettt e e ae e e b e e e b e e b e e bt e st e an e sanesaeesaeesneen e et s eanesrnesreenreenneen 91
22.1 (0]] 4Te] o I T T T TSP 91
22.1.1 [CT=T Y= =10 o] 4] o IO RSP UUPP 91
22.1.2 [oY [T PP PPPPRPRPIN 91
22,13 PAtRS ettt h e bt e bt ea bt bt e sh e e bt e bt e a et eh e e e bt e b e e bt e bt et e eatesheesheenbeebeenteeas 92
22,14 EAIOIS ettt ettt h e bbbt a et e u e e bt e bt ea ke et e ea b e she e sh e e bt oAb e e aE e eheeeh e e b e e bt e bt et e eatesheesheenbee bt enteans 92

98

	1 INTRODUCTION
	2 NOTES ON PROGRAMMING LANGUAGE
	3 DEVELOPMENT ENVIRONMENT
	3.1 Tools Bar
	3.2 Project Manager
	3.3 Object Manager
	3.3.1 Insert A Object

	4 VTBII TASKS
	4.1 Task Plc
	4.1.1 TASK PLC_INIT
	4.1.2 TASK PLC_Cycle
	4.1.3 Note on Concurrent Programming

	4.2 Task Time
	4.2.1 TASK TIME_Cycle

	4.3 Task Main
	4.3.1 TASK MAIN_INIT
	4.3.2 TASK MAIN_Cycle

	4.4 Functions
	4.4.1 Main_Functions
	4.4.2 Main_Functions_ObjectsEvents

	5 HARDWARE CONFIGURATION
	5.1 NGQ/NGQx Configuration
	5.2 NGMEVO Configuration
	5.3 NGWARP Configuration

	6 APPLICATION CONFIGURATION
	6.1 Type
	6.2 General
	6.2.1 Sampling
	6.2.2 Task Time

	6.3 Upload Settings
	6.3.1 Serial
	6.3.2 Ethernet

	6.4 Debug Settings
	6.4.1 Serial
	6.4.2 Ethernet

	6.5 Connection Settings
	6.5.1 Serial
	6.5.2 Ethernet

	6.6 .NET Framework
	6.6.1 Do not create Frameworks
	6.6.2 Windows XP and Higher
	6.6.3 Windows CE

	7 TYPE OF VARIABLES
	7.1 Valori Numerici
	7.2 Internal Variables
	7.3 BIT Variables
	7.4 Define
	7.5 Fixed Variables
	7.6 Pointers
	7.7 Array
	7.8 System Variable
	7.9 Static Variables
	7.10 Delegate
	7.11 Structure

	8 OPERATORS
	8.1 Logic and Mathematical Operators
	8.2 Notes on Expressions

	9 MATH FUNCTIONS
	9.1 SIN
	9.2 COS
	9.3 SQR
	9.4 TAN
	9.5 ATAN
	9.6 ASIN
	9.7 ACOS
	9.8 ATAN2
	◦ ABS
	9.9 FABS

	10 INSTRUCTIONS TO CONTROL THE PROGRAM FLOW
	10.1 IF-ELSE-ENDIF
	10.2 LABEL
	10.3 GOSUB-RETURN
	10.4 GOTO
	10.5 INC
	10.6 DEC
	10.7 SELECT-CASE-ENDSELECT
	10.8 FOR-NEXT-STEP-EXITFOR
	10.9 WHILE-LOOP-EXITWHILE

	11 FUNCTIONS
	11.1 Declaration of a function
	11.2 Internal Function variables

	12 SYSTEM FUNCTIONS
	12.1 FUNCTIONS FOR THE SERIAL PORT CONTROL
	12.1.1 SER_SETBAUD
	12.1.2 SER_MODE
	12.1.3 SER_GETCHAR
	12.1.4 SER_PUTCHAR
	12.1.5 SER_PUTS
	12.1.6 SER_PRINTL
	12.1.7 SER_PRINTF
	12.1.8 SER_PUTBLK
	12.1.9 SER_PUTST

	12.2 MISCELLANEOUS API FUNCTIONS
	12.2.1 GET_TIMER
	12.2.2 TEST_TIMER
	12.2.3 ALLOC
	12.2.4 FREE
	12.2.5 SYSTEM_RESET

	12.3 API FUNCTIONS FOR MANAGING OF STRINGS
	12.3.1 STRCPY
	12.3.2 STRLEN
	12.3.3 STRCMP
	12.3.4 STRCAT
	12.3.5 STR_PRINTL
	12.3.6 STR_PRINTF

	12.4 FUNCTIONS FOR AXES INTERPOLATION
	12.4.1 PROPERTY
	12.4.2 MOVETO
	12.4.3 LINETO
	12.4.4 ARCTO
	12.4.5 SETCMD
	12.4.6 SETPIANO
	..1 STOP
	12.4.7 FSTOP
	12.4.8 MOVE
	12.4.9 PRESET

	12.5 CANOPEN FUNCTIONS
	12.5.1 PXCO_SDODL
	12.5.2 PXCO_SDOUL
	12.5.3 READ_SDOAC
	..2 PXCO_SEND
	12.5.4 PXCO_NMT
	12.5.5 READ_EMCY

	12.6 DATA SAVING FUNCTIONS
	12.6.1 IMS_WRITE
	12.6.2 IMS_READ

	12.7 ETHERNET FUNCTIONS
	..3 SET_IP
	12.7.1 PXETH_ADD_PROT
	12.7.2 PROTOCOL PROCESS FUNCTION
	12.7.3 PXETH_RX

	13 COMPONENT FOR FRAMEWORK
	13.1 Enabling the creation of the COMPONENT NGFRAMEWORK
	13.2 Exporting VARIABLES
	13.3 Exporting FUNCTIONS

	14 APPLICATION DEBUG
	14.1 Button bar
	14.2 Writing of a variable
	14.3 Insert/Remove a Break-Point
	14.4 Firmware update
	14.5 Digital Scope

	15 ETHERCAT CONFIGURATION
	16 CANOpen NODE CONFIGURATION
	16.1 Import an Existing Configuration
	16.2 Export the Current Configuration
	16.3 Cfg Time
	16.3.1 Repetitions
	16.3.2 Interval

	16.4 PDOs
	16.4.1 Type
	16.4.2 Way
	16.4.3 COBID
	16.4.4 Inhibit Time
	16.4.5 Event Time
	16.4.6 Declaration VTBII variable for PDO

	16.5 Parameters
	16.5.1 Add a Parameter

	16.6 Datas

	17 IMPORT AN EDS FILE CANOpen
	18 MAKING A CUSTOM VTBII OBJECT
	18.1 New Object Properties
	18.1.1 Properties and Events
	18.1.2 Variables
	18.1.3 Object Code

	19 EXPORT NEW OBJECT IN THE CUSTOM LIBRARY
	20 SNIPPET
	20.1 New Snippet

	21 LADDER
	21.1 Add a Ladder Module
	21.2 Ladder Functions
	21.2.1 Insert a New NetWork
	21.2.2 Remove a NetWork
	21.2.3 Move a NetWork
	21.2.4 Insert the NetWork Properties
	21.2.5 Insert a Jump in the NetWork
	21.2.6 Insert Element Properties
	21.2.7 Add a Contact in serires
	21.2.8 Add a Contact in Parall
	21.2.9 Add an Output (Coil)
	21.2.10 Remove an Element

	21.3 Debug Ladder Application
	21.4 Ladder NetWork Example

	22 GENERAL SETTINGS
	22.1 Option
	22.1.1 General Option
	22.1.2 Project
	22.1.3 Paths
	22.1.4 Editors

