

Name: IBT Cat SW BASIC Page 1 of 18

1. Version history

V 0.1 15 Feb 2016 First Draft

V 1.1 14 Feb 2017 Corrections to endpoint ID in section 2.1.5

2. TRIO Controllers communications options

This application note consists on a summarized guide of the whole range of communication protocols
supported by Trio motion controllers. After reading this application note the user would be able to
communicate with the controller through its different interfaces and built in communication
protocols, as well as building a custom application layer by using BASIC code.

Ethernet
Communications

Interface

Modbus TCP:
client and server

UDP: client

TCP-IP: client

Ethernet IP:
Allen Bradley
server mode

Serial Port
Interface

Modbus RTU:
master and slave

Omron Hostlink:
master and slave

Programmable
Port

ActiveX
components

TrioPC Motion

MC Loader

Doc No.: AN-339

Version: 1.1

Date: 08 March 2017

Subject: TRIO Controllers communication options

Name: IBT Cat SW BASIC Page 2 of 18

2.1. Ethernet Communications Interface

TrioBASIC Ethernet Command

The TrioBASIC Ethernet command is used to configure 'end-points' on the controller with which clients
can communicate, using the Modbus TCP or EtherNet IP protocols. The 'Ethernet' command function
index '14' is used to access the endpoints, as follows:

Ethernet - Function 14 - read/write endpoints:

Read:

ETHERNET(0, slot, function, endpoint_id, parameter_index)

Write:

ETHERNET(1,slot,function,endpoint_id, parameter_index, parameter_value)

Where endpoint_id is:

Index Value Description

0 Modbus TCP

1 Ethernet IP – Assembly Object, Instance

100
Input to the controller

2 Ethernet IP – Assembly Object, Instance

101
Output from the controller

Where endpoint_id is:

Index Value Description

0 Address

1 Data type Register (hence configurable using register target

described below), VR, table, digital IO, analogue

IO.

2 Data format Integer 16 bit, integer 32 bit, floating point 32,

floating point 64

3 Length

4 Class

5 Instance

6 Address mode Changes the Modbus TCP address decode.

0: standard, 1: half address for 32 bit data.

If the parameter_index is data type, then the parameter_value is:

Index Value Description

0 Register

1 IO input

2 IO output

3 VR

4 Table

5 Digital IO Input

Name: IBT Cat SW BASIC Page 3 of 18

6 Digital IO Output

7 Analogue IO Input

8 Analogue IO Input

If the parameter_index is data format, then the parameter_value is:

Index Value Description

0 Integer 16 bit

1 Integer 32 bit

2 Floating point 32 bit

3 Floating point 64 bit

NOTES

 Assembly Object class 4, instance 100 = input to the controller, 101 = output from the controller.

 You cannot set the datatype to register, since the controller needs to know whether to access the
VRs or table when a get/set register request is received.

EXAMPLES

 Set endpoint 1 (Ethernet IP input) to VR Data type, and Data format to Floating point 32 bit:

ETHERNET(1,-1,14,1,1,3)

ETHERNET(1,-1,14,1,2,2)

 Change endpoint 1 (Ethernet IP input) input address to 100:

 ETHERNET(1,-1,14,1,0,100)

2.1.1. Modbus TCP: client and server

By using MODBUS and ETHERNET TRIO Basic commands, you can configure the TRIO controllers as a
client (Master) or server (Slave) Modbus node. The following BASIC code illustrates how to do a
Modbus TPC client against another node working as a server.

To use Trio controllers as servers, the ETHERNET command should be used to choose between either
16 bits (default) or 32 bits registers, and also if the registers will point to VRs or TABLE. Furthermore,
the halving addressing feature could be used in case of choosing 32 bits.

The halving addressing is set by default in the MC2X generation, it cannot be modified.

The example below consists on a client application running on a Trio controller and opening a
connection against another Trio controller doing the Modbus TCP server side.

 EXAMPLE:

currenthandle=100

nrerrors=101

currenterror=102

connectionstatus=103

'Virtual IO

opencon=104

closecon=105

stopprogram=106

Name: IBT Cat SW BASIC Page 4 of 18

allerrors=107

writecoils=108

readcoils=109

slotnumber=-1

MODBUS(1, slotnumber, VR(currenthandle)) 'close a previous connection is opened

MODBUS($12, slotnumber, VR(currenthandle)) 'Reset the entire error log

main:

 PRINT "SELECT OPERATION TO BE PERFORMED:"

 GOSUB printmenu

 WAIT UNTIL IN(104,111)>0

 'Open Conection

 IF IN(opencon) THEN

 OP(opencon,OFF)

 GOSUB checkconectionstatus

 IF VR(connectionstatus) =0 THEN

 IF MODBUS(0, slotnumber,192,168,0,190,502,currenthandle) THEN

 PRINT "Connection successfully open, now select the next

operation"

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

 ENDIF

 ELSE

 PRINT "The connection is already open"

 GOSUB blankline

 GOTO main

 ENDIF

 'Write coils

 ELSEIF IN(writecoils) THEN

 OP(writecoils,OFF)

 IF MODBUS(3, slotnumber, VR(currenthandle),$0F,100,3,203) THEN

 PRINT "Coils written:", VR(203).2, VR(203).1, VR(203).0

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

 ENDIF

 'Read coils

 ELSEIF IN(readcoils) THEN

 OP(readcoils,OFF)

 IF MODBUS(3, slotnumber, VR(currenthandle),1,100,3,200) THEN

 PRINT "Single coil", VR(200).2, VR(200).1, VR(200).0

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

Name: IBT Cat SW BASIC Page 5 of 18

 ENDIF

 'Close conection

 ELSEIF IN(closecon) THEN

 OP(closecon,OFF)

 IF MODBUS(1, slotnumber, VR(currenthandle)) THEN

 PRINT "Connection succesfully closed, now select the next

operation"

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

 ENDIF

 'Print all errors

 ELSEIF IN(allerrors) THEN

 OP(allerrors,OFF)

 GOSUB getallerrors

 GOTO main

 'Stop Program

 ELSEIF IN(stopprogram) THEN

 OP(stopprogram,OFF)

 HALT

 ENDIF

getallerrors:

 MODBUS($11,slotnumber, VR(currenthandle), 101) 'Get the number of errors for

the given handle

FOR x=1 TO nrerrors

 MODBUS($10, slotnumber, VR(currenthandle),x-1 ,102) 'Store the error in

VR(102)

 GOSUB printerror

NEXT x

RETURN

errorhandler:

MODBUS($10, slotnumber, VR(currenthandle),0 ,102) 'Store the error in VR(102)

GOSUB printerror

RETURN

printerror:

IF HEX(VR(currenterror)) = "1" THEN

 PRINT "MB_ERRCODE_ILLEGAL_FUNCTION"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "2" THEN

 PRINT "MB_ERRCODE_ILLEGAL_DATA_ADDRESS"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "3" THEN

 PRINT "MB_ERRCODE_ILLEGAL_DATA_VALUE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "4" THEN

 PRINT "MB_ERRCODE_SLAVE_DEVICE_FAILURE"

 GOSUB blankline

 RETURN

Name: IBT Cat SW BASIC Page 6 of 18

ELSEIF HEX(VR(currenterror)) = "5" THEN

 PRINT "MB_ERRCODE_ACKNOWLEDGE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "6" THEN

 PRINT "MB_ERRCODE_SLAVE_DEVICE_BUSY"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "7" THEN

 PRINT "MB_ERRCODE_NEGATIVE_ACKNOWLEDGE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "8" THEN

 PRINT "MB_ERRCODE_MEMORY_PARITY_ERROR"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "10" THEN

 PRINT "MB_ERRCODE_INVALID_PROTOCOL_IDENTIFIER"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "11" THEN

 PRINT "MB_ERRCODE_INVALID_MSG_LEN"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "12" THEN

 PRINT "MB_ERRCODE_CNX_CLOSED"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "13" THEN

 PRINT "MB_ERRCODE_BUSY"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "14" THEN

 PRINT "MB_ERRCODE_TIMEOUT"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "15" THEN

 PRINT "MB_ERRCODE_INVALID_RESPONSE_VALUE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "16" THEN

 PRINT "MB_ERRCODE_INVALID_REQUEST_PARAMETERS"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "17" THEN

 PRINT "MB_ERRCODE_INSUFFICIENT_RESOURCES"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "18" THEN

 PRINT "MB_ERRCODE_INVALID_CONFIG_MODE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "19" THEN

 PRINT "MB_ERRCODE_FAILED_OPEN_CNX"

 GOSUB blankline

RETURN

ELSEIF HEX(VR(currenterror)) = "1A" THEN

 PRINT "MB_ERRCODE_INVALID_PARAMETER"

 GOSUB blankline

Name: IBT Cat SW BASIC Page 7 of 18

RETURN

ELSEIF HEX(VR(currenterror)) = "1B" THEN

 PRINT "MB_ERRCODE_INVALID_CMD_HANDLE"

 GOSUB blankline

RETURN

ELSEIF HEX(VR(currenterror)) = "1C" THEN

 PRINT "MB_ERRCODE_INVALID_CNX_HANDLE"

 GOSUB blankline

RETURN

ELSEIF HEX(VR(currenterror)) = "1D" THEN

 PRINT "MB_ERRCODE_INVALID_CHECKSUM"

 GOSUB blankline

 RETURN

ELSE

 PRINT "UNKNOWN ERROR: "; VR(currenterror)

 GOSUB blankline

 RETURN

ENDIF

printmenu:

PRINT "Press INPUT 104 to Open connection"

PRINT "Press INPUT 105 to Close connection"

PRINT "Press INPUT 106 to Stop the program"

PRINT "Press INPUT 107 to Print all errors"

PRINT "Press INPUT 108 to write multiple Coils"

PRINT "Press INPUT 109 to read multiple Coils"

GOSUB blankline

RETURN

checkconectionstatus:

IF MODBUS(2, slotnumber, VR(currenthandle), connectionstatus) THEN

 RETURN

ELSE

 GOSUB errorhandler

 GOTO main

ENDIF

blankline:

PRINT ""

RETURN

2.1.2. UDP: client

The Trio UDP client implementation is used for the transport of ASCII and Binary data bytes between
devices over the Internet Protocol (IP), in a manner similar to the use of a serial port. So that a user
application program can send and receive strings of data using OPEN, CLOSE, PRINT, GET,
CHANNEL_READ and CHANNEL_WRITE commands.

The UDP packets can be sent from and read into strings, arrays of integer values or using VRs.

Some constraints to take into account are:

 UDP is supported only by the ARM based controllers (not MIPS/MC464)

The following example illustrates how TRIO controllers can establish a UDP communication, send and
receive packets.

The example below consists on a client application running on a Trio controller and opening a
connection against another Trio controller working as a server. As the server is a trio controller and
port 23 is being opened, characters are sent to the terminal (channel 0) of the server controller, this

Name: IBT Cat SW BASIC Page 8 of 18

is the reason why an “echo” response is obtained in the client controller.

EXAMPLE:

'Program Data

comms = 5

chan = 20

DIM str_output AS STRING(64)

DIM str_input AS STRING(64)

' begin

WA(120)

GOSUB close_port

WA(120)

GOSUB open_port

str_output = "?version" + CHR(13)

GOSUB write_string

WA(100)

GOSUB rx_scheduler

str_output = "?serial_number" + CHR(13)

GOSUB write_string_chwrite

WA(100)

GOSUB rx_scheduler_chread

STOP

' **

' API

'

'Program to close the connection in channel 21

close_port:

CLOSE#chan

RETURN

'Program to open the communication with the server through channel 21

open_port:

OPEN#chan AS "dgram:192.168.0.190(23)" FOR READ_WRITE

RETURN

'Program to send a string to the server controller

write_string:

PRINT#chan, str_output;

RETURN

'Program to send a string to the server controller

write_string_chwrite:

CHANNEL_WRITE(chan, str_output)

RETURN

'Program to read all data received from the server controller (storing ascii code

received in a variable), and write

'to channel 5

rx_scheduler:

WHILE KEY#chan

 GET#chan,value

 PRINT#comms,CHR(value);

WEND

RETURN

Name: IBT Cat SW BASIC Page 9 of 18

'Program to read all data received from the server controller (storing ascii code

received in a variable), and write

'to channel 5

rx_scheduler_chread:

PRINT CHANNEL_READ(chan,str_input)

PRINT#comms,str_input;

RETURN

'Program to read all data received from the server controller (storing ascii code

received in a VR), and write

'to channel 5

rx_scheduler_vr:

WHILE KEY#chan

 GET#chan,VR(100)

 PRINT#comms,CHR(VR(100));

WEND

RETURN

2.1.3. TCP-IP: client

The Trio TCP client implementation is used for the transport of ASCII and Binary data bytes between
devices over the Internet Protocol (IP), in a manner similar to the use of a serial port. So that a user
application program can send and receive strings of data using OPEN, CLOSE, PRINT, GET
CHANNEL_READ and CHANNEL_WRITE commands. It basically works in the same manner as the UDP
client but it is safer since the delivery of packages are guaranteed. It is also slower compared to UDP,
but more suitable for certain applications.

The TCP packets can be sent from and read into strings, arrays of integer values or using VRs.

Some constraints to take into account are:

 UDP is supported only by the ARM based controllers (not MIPS/MC464)

The following example illustrates how TRIO controllers can establish a TCP communication, send and
receive packets.

The example below consists on a client application running on a Trio controller and opening a
connection against another Trio controller working as a server. As the server is a trio controller and
port 23 is being opened, characters are sent to the terminal (channel 0) of the server controller, this
is the reason why an “echo” response is obtained in the client controller.

EXAMPLE:

'Program Data

comms = 5

chan = 21

DIM str_output AS STRING(64)

DIM str_input AS STRING(64)

' begin

WA(120)

GOSUB close_port

WA(120)

GOSUB open_port

str_output = "?version" + CHR(13)

GOSUB write_string

WA(100)

GOSUB rx_scheduler

str_output = "?serial_number" + CHR(13)

GOSUB write_string_chwrite

WA(100)

Name: IBT Cat SW BASIC Page 10 of 18

GOSUB rx_scheduler_chread

STOP

' **

' API

'

'Program to close the connection in channel 21

close_port:

CLOSE#chan

RETURN

'Program to open the communication with the server through channel 21

open_port:

OPEN#chan AS "tcp:192.168.0.190(23)" FOR READ_WRITE

RETURN

'Program to send a string to the server controller

write_string:

PRINT#chan, str_output;

RETURN

'Program to send a string to the server controller

write_string_chwrite:

CHANNEL_WRITE(chan, str_output)

RETURN

'Program to read all data received from the server controller (storing ascii code

received in a variable), and write

'to channel 5

rx_scheduler:

WHILE KEY#chan

 GET#chan,value

 PRINT#comms,CHR(value);

WEND

RETURN

'Program to read all data received from the server controller (storing ascii code

received in a variable), and write

'to channel 5

rx_scheduler_chread:

PRINT CHANNEL_READ(chan,str_input)

PRINT#comms,str_input;

RETURN

'Program to read all data received from the server controller (storing ascii code

receiver in a VR), and write

'to channel 5

rx_scheduler_vr:

WHILE KEY#chan

 GET#chan,VR(100)

 PRINT#comms,CHR(VR(100));

WEND

RETURN

Name: IBT Cat SW BASIC Page 11 of 18

2.1.4. Ethernet IP: Allen Bradley server mode

Ethernet/IP is an application layer protocol designed for use in process control and industrial
automation. It is built on the Common Industrial Protocol (CIP) - as used in Devicenet and Controlnet.
However, Ethernet IP uses the standard TCP/IP stack, and exchanges information over the Ethernet
physical layer. The specification is managed by the ODVA.

The Trio Motion Coordinator is an Ethernet IP server which waits, listening for an incoming message
from a client. It will then act on this message – writing to controller memory, returning controller
memory values, or setting up a connection for exchanging fast cyclic data.

The Motion Coordinator supports the two fundamental message types defined by this protocol. The
first is the explicit protocol, used for acyclic one-time request-response type messages, in which the
message defines its own meaning and contains all necessary data to perform the requested operation.
The second is the implicit protocol, defining regular cyclic messages which contain only a connection
identifier and the message data. These messages are used to transport high frequency IO type data.
The meaning of the data is defined when the connection between the client and server end-points is
established.

2.2. Serial Port Interface

2.2.1. Modbus RTU: master and slave

Modbus RTU is a widely known protocol running over the serial communication interface (RS-232, RS-
485). Trio controllers can run this protocol as a slave or master by properly setting the SETCOM
command. This command will allow the user to configure the serial port of the controller, setting
parameters like the baud rate, parity, choosing the physical interface, the communications protocol,
etc.

If the Trio controller is configured to work as a slave, using SETCOM and ADDRESS will be enough.
ADDRESS will just set the address of the node on the Modbus network.

ADDRESS=1

SETCOM(38400,8,1,2,1,4,0,3)

If the Trio controller is configured to work as a Modbus master, besides configuring the serial port to
work as a Modbus master (mode 11), the MODBUS command must be used to execute the different
Modbus functions. As shown in the example below, the MODBUS functions works exactly in the same
way as in Modbus TCP (see Modbus TCP: client and server).

As in previous examples, the following consists on a client application running on a Trio controller and
opening a connection against another Trio controller doing the Modbus RTU slave side.

EXAMPLE

currenthandle=100

nrerrors=101

currenterror=102

connectionstatus=103

'Virtual IO

opencon=104

closecon=105

stopprogram=106

allerrors=107

writecoils=108

readcoils=109

slotnumber=-1

'set the rs232 serial PORT 1 parameters, AND start MODBUS rtu client

PROTOCOL

SETCOM(38400,8,1,2,1,11,0,10) 'Modbus RS232 2 wires mode 11

Name: IBT Cat SW BASIC Page 12 of 18

MODBUS(1, slotnumber, VR(currenthandle)) 'close a previous connection is

opened

MODBUS($12, slotnumber, VR(currenthandle)) 'Reset the entire error log

main:

PRINT "SELECT OPERATION TO BE PERFORMED:"

GOSUB printmenu

WAIT UNTIL IN(104,111)>0

'Open Conection

IF IN(opencon) THEN

 OP(opencon,OFF)

 GOSUB checkconectionstatus

 IF VR(connectionstatus) =0 THEN

 IF MODBUS(0, slotnumber,-1,0,currenthandle) THEN

 PRINT "Connection succesfully open, now select the next

operation", VR(currenthandle)

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

 ENDIF

 ELSE

 PRINT "The connection is already open"

 GOSUB blankline

 GOTO main

 ENDIF

 'Write coils

ELSEIF IN(writecoils) THEN

 OP(writecoils,OFF)

 IF MODBUS(3, slotnumber, VR(currenthandle),$0F,1,100,3,203) THEN

 PRINT "Coils written:", VR(203).2, VR(203).1, VR(203).0

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

 ENDIF

 'Read coils

ELSEIF IN(readcoils) THEN

 OP(readcoils,OFF)

 IF MODBUS(3,slotnumber,VR(currenthandle),1,1,100,3,200) THEN

 PRINT "Single coil", VR(200).2, VR(200).1, VR(200).0

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

 ENDIF

 'Close conection

ELSEIF IN(closecon) THEN

 OP(closecon,OFF)

Name: IBT Cat SW BASIC Page 13 of 18

 IF MODBUS(1, slotnumber, VR(currenthandle)) THEN

 PRINT "Connection succesfully closed, now select the next operation"

 GOSUB blankline

 GOTO main

 ELSE

 GOSUB errorhandler

 GOTO main

 ENDIF

 'Print all errors

ELSEIF IN(allerrors) THEN

 OP(allerrors,OFF)

 GOSUB getallerrors

 GOTO main

 'Stop Program

ELSEIF IN(stopprogram) THEN

 OP(stopprogram,OFF)

 HALT

ENDIF

getallerrors:

MODBUS($11,slotnumber,VR(currenthandle), 101) 'Get the number of errors for

the given handle

FOR x=1 TO nrerrors

 MODBUS($10, slotnumber, VR(currenthandle),x-1 ,102) 'Store the error in

VR(102)

 GOSUB printerror

NEXT x

RETURN

errorhandler:

MODBUS($10, slotnumber, VR(currenthandle),0 ,102) 'Store the error in

VR(102)

GOSUB printerror

RETURN

printerror:

IF HEX(VR(currenterror)) = "1" THEN

 PRINT "MB_ERRCODE_ILLEGAL_FUNCTION"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "2" THEN

 PRINT "MB_ERRCODE_ILLEGAL_DATA_ADDRESS"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "3" THEN

 PRINT "MB_ERRCODE_ILLEGAL_DATA_VALUE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "4" THEN

 PRINT "MB_ERRCODE_SLAVE_DEVICE_FAILURE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "5" THEN

 PRINT "MB_ERRCODE_ACKNOWLEDGE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "6" THEN

Name: IBT Cat SW BASIC Page 14 of 18

 PRINT "MB_ERRCODE_SLAVE_DEVICE_BUSY"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "7" THEN

 PRINT "MB_ERRCODE_NEGATIVE_ACKNOWLEDGE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "8" THEN

 PRINT "MB_ERRCODE_MEMORY_PARITY_ERROR"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "10" THEN

 PRINT "MB_ERRCODE_INVALID_PROTOCOL_IDENTIFIER"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "11" THEN

 PRINT "MB_ERRCODE_INVALID_MSG_LEN"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "12" THEN

 PRINT "MB_ERRCODE_CNX_CLOSED"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "13" THEN

 PRINT "MB_ERRCODE_BUSY"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "14" THEN

 PRINT "MB_ERRCODE_TIMEOUT"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "15" THEN

 PRINT "MB_ERRCODE_INVALID_RESPONSE_VALUE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "16" THEN

 PRINT "MB_ERRCODE_INVALID_REQUEST_PARAMETERS"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "17" THEN

 PRINT "MB_ERRCODE_INSUFFICIENT_RESOURCES"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "18" THEN

 PRINT "MB_ERRCODE_INVALID_CONFIG_MODE"

 GOSUB blankline

 RETURN

ELSEIF HEX(VR(currenterror)) = "19" THEN

 PRINT "MB_ERRCODE_FAILED_OPEN_CNX"

 GOSUB blankline

RETURN

ELSEIF HEX(VR(currenterror)) = "1A" THEN

 PRINT "MB_ERRCODE_INVALID_PARAMETER"

 GOSUB blankline

RETURN

ELSEIF HEX(VR(currenterror)) = "1B" THEN

 PRINT "MB_ERRCODE_INVALID_CMD_HANDLE"

 GOSUB blankline

RETURN

Name: IBT Cat SW BASIC Page 15 of 18

ELSEIF HEX(VR(currenterror)) = "1C" THEN

 PRINT "MB_ERRCODE_INVALID_CNX_HANDLE"

 GOSUB blankline

RETURN

ELSEIF HEX(VR(currenterror)) = "1D" THEN

 PRINT "MB_ERRCODE_INVALID_CHECKSUM"

 GOSUB blankline

 RETURN

ELSE

 PRINT "UNKNOWN ERROR: "; VR(currenterror)

 GOSUB blankline

 RETURN

ENDIF

printmenu:

PRINT "Press INPUT 104 to Open connection"

PRINT "Press INPUT 105 to Close connection"

PRINT "Press INPUT 106 to Stop the program"

PRINT "Press INPUT 107 to Print all errors"

PRINT "Press INPUT 108 to write multiple Coils"

PRINT "Press INPUT 109 to read multiple Coils"

GOSUB blankline

RETURN

checkconectionstatus:

IF MODBUS(2, slotnumber, VR(currenthandle), connectionstatus) THEN

 RETURN

ELSE

 GOSUB errorhandler

 GOTO main

ENDIF

blankline:

PRINT ""
RETURN

2.2.2. Omron Hostlink: master and slave

Hostlink is a serial communications protocol used by many devices. This protocol is a built-in feature
of most of TRIO controllers and it allows the Hostlink Master to exchange data with the VR and TABLE
of the Slaves.

The following pieces of code shows how to stablish the communication and make the basic data
exchange operations with the TRIO controllers.

2.2.2.1. Slave TRIO configuration

Each slave Motion Coordinator must be set to run on power-up. The first slave should be set as
HLS_NODE=0, the second one as HLS_NODE=1, third as HLS_NODE=2, etc.

'''SLAVE CONFIGURATION'''

baud_rate = 9600

data_bits = 7

stop_bits = 2

parity = 2 ' Even parity

option =5 ' Host Link Slave

SETCOM(baud_rate,data_bits,stop_bits,parity,2,option)

' Host Link Slave settings

'------------------------------

Name: IBT Cat SW BASIC Page 16 of 18

HLS_NODE=1

HLS_MODEL=48

2.2.2.2. Master TRIO configuration

The master is configured with a single SETCOM command like this:

'set up host link master for PORT 2

SETCOM(9600,7,2,2,2,6)

After configuration there are various Hostlink Master Commands that can be used in the BASIC. For
example: HLM_READ and HLM_WRITE.

2.2.2.3. Read 4 VRs from slave at node 1

4 x 16 bit words are read from VR(2) to VR(5) in slave 1 and put the data into VR(100) to VR(103) in
the master.

' HLM_READ(port, node, pc_area, pc_offset, length, mc_area, mc_offset)

' source ADDRESS: VR(2)

' amount of data: 4 words

' destination ADDRESS: VR(100)

HLM_READ(2,1 ,PLC_IR,2,4,MC_VR,100)

2.2.2.4. Read 4 VRs from slave at node 5

4 x 16 bit words are read from TABLE(22) to TABLE(25) in slave 1 and put the data into VR(1200) to
VR(1203) in the master.

' source ADDRESS: TABLE(22)

' amount of data: 4 words

' destination ADDRESS: VR(1200)

HLM_READ(2,5,PLC_DM,22,4,MC_VR,1200)

2.2.2.5. Write 10 values from TABLE in master to TABLE in slave node 0

10 x 16 bit words from TABLE(18) to TABLE(27) in the master are written to the slave 0, into
TABLE(14) to TABLE(23).

' Source address: TABLE(18)

' Amount of data: 10 words

' Destination address: TABLE(14)

HLM_WRITE(2,0,PLC_DM,14,10,MC_TABLE,18)

2.2.2.6. Error checking routine

The Hostlink protocol has some error checking. HLM_STATUS returns the value of the error number if
there is an error, or 0 if there is no error. The following example is a typical error routine.

' Source address: Table(18)

' Amount of data: 2 words

' Destination address: TABLE(14)

HLM_WRITE(2,0,PLC_DM,14,2,MC_TABLE,18)

IF HLM_STATUS<>0 THEN GOSUB report_status

report_status:

' decodes the HLM_STATUS word and prints to terminal

hst = HLM_STATUS

IF hst AND $200 THEN

 PRINT #term,"HLM: Command not Recognised"

ENDIF

Name: IBT Cat SW BASIC Page 17 of 18

IF hst AND $100 THEN

 PRINT #term,"HLM: Timeout error"

ENDIF

hst=hst AND $ff

IF hst=0 THEN

 PRINT #term,"HLM: Normal completion"

ELSEIF hst=1 THEN

 PRINT #term,"HLM: Not executable in RUN mode"

ELSEIF hst=13 THEN

 PRINT #term,"HLM: FCS error"

ELSEIF hst=14 THEN

 PRINT #term,"HLM: Format error"

ELSEIF hst=15 THEN

 PRINT #term,"HLM: Entry number data error"

ELSEIF hst=18 THEN

 PRINT #term,"HLM: Frame length error"

ELSEIF hst=19 THEN

 PRINT #term,"HLM: Not executable"

ELSEIF hst=21 THEN

 PRINT #term,"HLM: CPU error"

ELSE

 PRINT #term,"HLM: Unknown error"

ENDIF

RETURN

2.2.3. Programmable Port

The programmable port utility is used for the transport of ASCII and Binary data bytes between
devices over a serial communication link. So that a user application program can send and receive
strings of data using OPEN, CLOSE, PRINT, GET CHANNEL_READ and CHANNEL_WRITE commands.

The packets can be sent from and read into strings, arrays of integer values or using VRs.

The following example illustrates how TRIO controllers can establish a serial communication over an
RS-232 connection, send and receive packets.

The example below consists on a point to point serial connection between two Trio controllers. One
of the controllers send and receive an echo response from the other.

EXAMPLE

Controller 1

DIM output_str AS STRING(100)

DIM input_str AS STRING(100)

chann = 1

output_str = "This is the string to be sent and read back through the serial

port"

PRINT #chann, output_str

WA(30)

IF KEY #chann THEN

 CHANNEL_READ(chann,input_str)

 PRINT #5, input_str

ENDIF

Controller 2

Name: IBT Cat SW BASIC Page 18 of 18

chann = 1

WHILE TRUE

 IF KEY #chann THEN

 GET #chann, ascii_code

 PRINT#chann, CHR(ascii_code);

 ENDIF

WEND

2.3. ActiveX Components

2.3.1. TrioPC Motion

TrioPC Motion is an ActiveX component that can be used to create windows client applications in any
of the windows programming languages (VB.NET, C#, Visual C/C++, Delphi) as well as other
applications supporting ActiveX (OCX) such as LabView.

This component contains wide function library, allowing the user to perform most of the motion
commands as well as managing variables among other things. The connection can be done via a USB
or Ethernet link.

For more information about installation and examples, you could consult our support section on our
website. The application note AN-215 might be also really useful.

2.3.2. MC Loader

MC Loader is an ActiveX component that can be used to create windows client applications in any of
the windows programming languages (VB.NET, C#, Visual C/C++, Delphi) as well as other applications
supporting ActiveX (OCX) such as LabView.

This component can load projects (produced with Motion Perfect 2 or Motion Perfect v3) and
programs onto a Trio Motion Coordinator. Communication with the Motion Coordinator can be via
Serial link, USB, Ethernet or PCI depending on the Motion Coordinator.

http://www.triomotion.com/tmt3/sitefiles/downloads/docsearch.asp?Type=1
http://www.triomotion.com/upload/AN-215%20Upgrading%20PCMotion%20Components.pdf

